一篇文章为你解读大数据的现在和未来

大数据的发展前提

关于大数据的概念其实在1998年已经就有人提出了,但是到了现在才开始有所发展,这些其实都是和当下移动互联网的快速发展分不开的,移动互联网的高速发展,为大数据的产生提供了更多的产生大数据的硬件前提,比如说智能手机,智能硬件,车联网,pda等数据的产生终端。这些智能通过移动通信技术和人们的生活紧密的结合在一起,在人流、车流的背后产生了信息流,也就产生了大量的数据。

其次就是移动通信技术的快速发展,在2G时代,无线网速慢,数据产生也非常慢,数据体量也不够,所以还是无法形成大数据,而到了4G时代,终端数据的增加,使得任何的移动终端都在无时无刻的产生着大量的数据,这个也是大数据到来的一个条件之一。

第三个方面的就是大数据相关技术的飞速发展,如云计算,云存储技术,他们的快速发展,是大数据诞生的温床,如果没有这些技术,即使有大量的数据也只能望洋兴叹。传统的存储技术相对落后,根据不同数据实行单一存储,这个显然满足不了大数据的需求,而云时代的存储系统需要的不仅仅是容量的提升,对于性能的要求同样迫切,与以往只面向有限的用户不同,在云时代,存储系统将面向更为广阔的用户群体,用户数量级的增加使得存储系统也必须在吞吐性能上有飞速的提升,只有这样才能对请求作出快速的反应,云储存技术的成熟为大数据的快速发展奠定了基础。

什么是大数据?

不过说起大数据,估计大家都觉得只听过概念,但是具体是什么东西,怎么定义,没有一个标准的东西,因为在我们的印象中好像很多公司都叫大数据公司,业务形态则有几百种,感觉不是很好理解,所以我建议还是从字面上来理解大数据,在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》提到了大数据的4个特征,一个是数量大,一个是价值大,一个是速度快,一个是多样性。

一个是数量比较大,大致有多大,就是大到PB级别,甚至ZB级别,1PB等于1024TB,1TB等于1024G,那么1PB等于100多G,当然了具体的计算方法可以相关资料数据进行查询,总之,和传统的单个网站数据库存储的数据相比,已经是它的上百倍还多,而只有数据体量达到了PB级别以上,才能被称为大数据。第二个是价值大,价值是大体量数据的更深一步的演变,就是说,你如果有1PB以上的全国所有20-35年轻人的上网数据的时候,那么它自然就有了商业价值,比如通过分析这些数据,我们就知道这些人的爱好,进而指导产品的发展方向等等。如果有了全国几百万病人的数据,根据这些数据进行分析就能预测疾病的发生。这些都是大数据的价值。

第三个就是多样性,如果只有单一的数据,那么这些数据就没有了价值,比如只有单一的个人数据,或者单一的用户提交数据,这些数据还不能称为大数据,所以说大数据还需要是多样性的,比如当前的上网用户中,年龄,学历,爱好,性格等等每个人的特征都不一样,这个也就是大数据的多样性,当然了如果扩展到全国,那么数据的多样性会更强,每个地区,每个时间段,都会存在各种各样的数据多样性。

第四个是速度快,就是通过算法对数据的逻辑处理速度非常快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。

总之,这些就是大数据的四个特征,只有具备了这些特征的数据才能称为大数据,那么实际中的大数据是怎么样呢?业内著名的和大数据相关的公司,七牛云存储将要在8月29日、30日举办一次大数据的会议,对于位于大数据技术产业链上的公司来说,我们应该可以获得更多的干货爆料。

大数据的三个层次

说起大数据,大数据有三个层次,第一个是数据采集层,以App、saas为代表的服务。第二个技术服务层,以七牛云存储为代表的大数据技术服务层,这些包括数据的存储,数据的分析,数据的挖掘等等,第三个是数据应用层,以数据为基础,为将来的移动社交、交通、教育,金融进行服务。下面我就主要的讲下三个层面。

数据采集层——App、saas服务

在移动互联网时代,大数据的来源层有两个方面,一个方面是面向个人的数据来源前端如各种各样的App,一方面是面向企业服务的saas服务的产品。面向个人的App

在饮食领域的App,如饿了么,用户通过App进行选餐,下单,通过App交互就会形成饮食领域的大数据;在o2o领域,如嗒嗒巴士,用户通过使用App进行乘坐交通,上班下班,就会形成交通领域的大数据,如穿衣助手,用户通过App进行选择衣服颜色,样式,进行搭配,就会形式服务类的大数据,当然了还有秒拍、快看等娱乐类的消费数据。面向个人用户的App,以满足用户的需求为主要出发点,产生用户的数据,这些数据包括以个人基础的数据,也包括随群体数据,随着App用户量的增长,这些App数据就成了大数据。

面向个人的数据来源,直接通过用户的需求产生数据,而面向企业服务的——saas服务则不一样,他们通过为企业提供一套完整的解决方案,而产生数据,比如图灵机器人,人脸识别技术,气象plus、海康威视等,他们通过完美的解决方案服务企业,最终服务用户,从而产生大数据,数据采集层,是大数据的来源,也是大数据的基础。

云存储对大数据的促进作用

有了数据采集层,那么下一步就是数据的存储层了,使用云存储技术将数据存储在云主机上,保证数据的安全、稳定、高效都需要云存储技术来完成。云存储主要负责数据的存储以及计算,比如七牛的云存储技术,云存储技术是大数据发展跨不过去的一道坎,如果没有云存储技术,大数据就不能得到发展。

云存储中面向企业存储的数据最大

当前的云存储分为公共云存储和私有云存储,公共云存储主要是面向个人,比如百度网盘等,而私有云存储主要是面向企业,其实面向企业的云存储的存储的大数据最终来源还是来自个人,比如目前的很多saas服务,IM、统计等企业服务,服务主要是面向个人的App,而类似七牛云存储这样的云存储则是出于更底层,基于云主机之上,而位于所有个人服务、企业服务之下,所以说,七牛云存储应该积累了更多的大数据,而通过即将月底举办的这次《数据重构未来》的大会,我想可以获得更多的关于大数据的干货。

云存储满足了海量大数据海量数据的存储需求

随着移动互联网的快速发展,传统的存储方式已经在容量、性能、智能化等方面无法满足需求。云存储的出现,比如类似和七牛一样的云存储技术,从功能上弥补了传统存储的不足,通过虚拟化大容量存储、分布式存储和自动化运维等功能,实现了存储空间无限增加和扩容,自动化和智能化功能提高了存储效率。另外,规模效应和弹性扩展,降低运营成本,避免资源浪费。

云存储技术节省了开发者的成本

特别是当下移动互联网的火爆,使得App行业出现了爆发式的增长,App的数量已经达到了300百万以上,同时图片App、视频App、音频App如camera360、优酷视频、荔枝FM等App都会在发展过程中产生大量的数据,对于这些数据来说,如果让企业自身去开发一款分布式的存储系统,这可能需要构建一个几十人的开发团队,成本也会大大增加,而通过使用类似七牛一样的云存储,可以节约企业成本,让企业发展更加迅速。

云存储技术为大数据的数据分析提供了基础依据

作为大数据的存储服务商,云存储有着非常大的数据挖掘潜力,云存储平台为大数据的分析提供了“水”的来源,有了这些数据,同时配置上一些数据分析工具,完全可以产生一些非常有价值的分析数据报告。

比如基于云存储服务这个基础,七牛可以在企业的需求下,为企业提供企数据分析,例如这款应用在哪些地区受访问次数多、怎样的用户更喜欢这款应用等,但不会涉及分析用户隐私相关的数据。当然了,还可以针对整个图片行业、视频行业、以及音频行业提供受众的用户行为、以及特征这一系列的群体特征。

这些都是云存储在存储的数据体量达到大数据的特征后,能做的一系列的分析依据。所以说云存储是大数据发展中的最重要的一个环节。

大数据未来的行业应用

说了大数据的采集层,数据存储层,那么最后讲下大数据的应用层,既然有了大数据,那么以大数据为基础,就会产生以移动金融,移动社交,o2o,在线教育等多方面的应用。

移动金融

随着移动互联网金融的发展,金融交易与支付已经从桌面电脑延伸到移动智能终端,企业自身只能从内部洞察经营情况,或从市场中获得不全面的统计信息,作为决策参考。比如银联智惠可以帮助企业能够从外部了解市场,洞察对手的位置,了解市场趋势和自身的地位,通过利用自身优势通过全行业的交易记录得到高质量的基础数据,并替企业完成了大量繁琐的数据采集、清理工作,整合到企业的基础经营分析数据库中,让企业事半功倍。

当基础数据进入企业数据库后,通过银联智惠的用户画像模拟器进行目标客户消费行为建模,将历史交易行为分得出目标客户的交易共性特征,从而完整的从消费性别、消费年龄、消费习惯、消费频率、消费区域、消费偏好等多重维度完整描述客户群的轮廓,并得出客户的上下游关联交易行为特征,让企业真正认知客户群体的全貌,从而进行有效的商业决策。

移动社交

随着脉脉,恋爱记等社交应用的用户越来越多,用户的社交行为将会成为大数据的分析基础,通过分析用户的社交时间、对象、地点以及行为,可以分析出用户的爱好、年龄、需求,同时基于用户的大数据,可以针对这些数据做定向营销,从而大大提升了营销的效果,而相比之前的营销手段,则是基本根据人员的策划和想象得出,没有数据参考,营销的效果也不好把控。比如脉脉可以通过一些用户数据为企业招聘到合适的人,同时还能为一些用户提供一些合适的职位,完成需求和供求的高精度的匹配。

而恋爱记,是一款记录恋爱为主的社交App,更加垂直,那么通过分析情侣之间的数据,可以获得更多的情感数据,从而为一些适龄男女提供恋爱的指导。这些都是基于大数据的应用。

O2O类的应用

移动互联网的深入发展,促进了o2o的繁荣,以嗒嗒巴士为代表的定制公交车应用,就是大数据的代表应用。

传统的公交出行在公交站、公交路线的设定上,相对来说比较固定,通过分析一个城市内的群体出行数据,可以获得人群随着时间的出行规则,比如知道在早上8点为出行高峰,而从某个小区到某个写字楼的人流数为最大,那么我就定制一条公交线路出来,对于用户来说,满足了用户的需求,而对于公交公司来说,则是优化了交通路线,节约了资源,间接提升了成本,这些都是大数据的好处。

……

还有更多的领域可以用到大数据,如大数据医疗,大数据营销,可穿戴设备等等。通过大数据可以创造出更多价值,正如一篇文章说到,通过大数据让做事的方法更加容易,让现实从三维空间变成了二维码空间,就像宇宙的虫洞一样,可以直接达到目标。意思是在过去没有大数据做参考,我们需要试验多次,才能知道那条路是对的,但是现在有了大数据做数据参考,我们可以直接到达终点。所以说大数据使得事情的发展变得更加简单。

当然,这些都是关于大数据的一些想象和预测,但是在现实中,真正的大数据是什么样子呢?他们做到了哪些事情?我想还要去听一听8月29日七牛主办的《数据重构未来》大会,看看会议上嘉宾的数据分享报告里,预测的那些商业价值和机会。

作者:移动互联网李建华,微信:ydhlwdyq移动互联网行业推广人士,转载本篇文章,请注明作者和微信,否则将追究你的法律权利。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容