损失函数,代价函数,风险函数,目标函数

https://blog.csdn.net/qq_28448117/article/details/79199835


  • 损失函数(Loss Function)== 代价函数(Cost Function):是定义在单个样本上的,是指一个样本的误差。与代价函数是同一个东西。损失函数越小说明拟合结果越符合数据集的情况。

                                  L(Y,f(X))=(Y-f(X))^2

  • 风险函数: 损失函数的期望(前n个损失函数之和/N),这是由于我们输入输出的(X,Y)遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集,f(X)关于训练集的平均损失称作经验风险(empirical risk),我们的目标就是最小化经验风险。

                                  L(Y,f(X))=\frac{1}{N}\sum_{i=1}^{N}L(y_i,f(x_i))

  • 目标函数(Object Function):是指最终需要优化的函数,一般来说是经验风险+结构风险,也就是(代价函数+正则化项)。

                                  min\frac{1}{N}\sum_{i=1}^{N}L(y_i,f(x_i))+\lambda*J(f)

正则化项J(f)的由来:

过拟合时的过于复杂的函数模型,导致了较高的结构风险。我们不仅要让经验风险最小化,还要让结构风险最小化。这个时候就定义了一个函数J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有L1, L2范数,在下一章会介绍。


几种损失函数:

  1. 0-1损失函数(0-1 loss function)

也就是说,当预测错误时,损失函数为1,当预测正确时,损失函数值为0。该损失函数不考虑预测值和真实值的误差程度。只要错误,就是1。

image.png
  1. 平方损失函数(quadratic loss function) (常用于线性回归)

指预测值与实际值差的平方。

                                 L(y,f(x))=(y-f(x))^2

  1. 绝对值损失函数(absolute loss function)

该损失函数的意义和上面差不多,只不过是取了绝对值而不是求绝对值,差距不会被平方放大。

image.png
  1. 对数损失函数(logarithmic loss function)

这个损失函数就比较难理解了。事实上,该损失函数用到了极大似然估计的思想。P(Y|X)通俗的解释就是:在当前模型的基础上,对于样本X,其预测值为Y,也就是预测正确的概率。由于概率之间的同时满足需要使用乘法,为了将其转化为加法,我们将其取对数。最后由于是损失函数,所以预测正确的概率越高,其损失值应该是越小,因此再加个负号取个反。

image.png
  1. Hinge loss

Hinge loss一般分类算法中的损失函数,尤其是SVM,其定义为:


image.png

其中 y=+1或y=−1 ,f(x)=wx+b ,当为SVM的线性核时。


代价函数

(1)均方误差(Mean Squared Error)
均方误差是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度

image.png

(2)均方根误差:
均方根误差是均方误差的算术平方根,能够直观观测预测值与实际值的离散程度。

image.png

(3)平均绝对误差(Mean Absolute Error)
平均绝对误差是绝对误差的平均值 ,平均绝对误差能更好地反映预测值误差的实际情况。

image.png

(4)交叉熵代价函数(Cross Entry)
交叉熵是用来评估当前训练得到的概率分布与真实分布的差异情况,减少交叉熵损失就是在提高模型的预测准确率。其中 p(x) 是指真实分布的概率, q(x) 是模型通过数据计算出来的概率估计。

image.png

其中 f(x) 可以是sigmoid函数。或深度学习中的其它激活函数。而 y(i)∈0,1 。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容