Python网络编程 —— 进程


个人独立博客:www.limiao.tech
微信公众号:TechBoard


进程

进程:通俗理解就是一个运行的程序或者软件,进程是操作系统资源分配的基本单位

一个程序至少有一个进程,一个进程至少有一个线程,多进程可以完成多任务

进程的状态

工作中,任务数往往大于cpu的核数,即一定有一些任务正在执行,而另外一些任务在等待cpu进行执行,因此导致了有了不同的状态

进程的使用

导入进程模块:

import multiprocessing

用进程完成多任务

import multiprocessing
import time


def sing():
    for i in range(10):
        print("唱歌中...")
        time.sleep(0.2)

def dance():
    for i in range(10):
        print("跳舞中...")
        time.sleep(0.2)

if __name__ == "__main__":
    # 创建对应的子进程执行对应的任务
    sing_process = multiprocessing.Process(target=sing)
    dance_process = multiprocessing.Process(target=dance)

    # 启动进程执行对应的任务
    sing_process.start()
    dance_process.start()

Process类参数介绍
import multiprocessing
import os


def show_info(name,age):
    print("show_info:", multiprocessing.current_process())
    
    # 获取进程的编号
    pritn("show_info pid:", multiprocessing.current_process().pid, os.getpid)
    print(name, age)

if __name__ == "__main__":
    # 创建子进程
    # group: 进程组,目前只能使用None
    # target: 执行的目标任务
    # args: 以元组方式传参
    # kwargs: 以字典方式传参
    sub_prcess = multiprocessing.Process(group=None, target=show_info, arg=("杨幂", 18))
    sub_prcess.start()

进程之间不共享全局变量
import multiprocessing
import time


# 全局变量
g_list = []

# 添加数据
def add_data():
    for i in range(15):
        g_list.append(i)
        time.sleep(0.1)
    print("add_data:", g_list)

# 读取数据
def read_data():
    print("read_data:", g_list)

if __name__ == "__main__":
    # 创建添加数据的子进程
    add_process = multiprocessing.Process(target=add_data)
    # 创建读取数据的子进程
    read_process = multiprocessing.Process(target=read_data)

    # 启动进程
    add_process.start()
    # 主进程等待添加数据的子进程执行完成以后再执行读取进程的操作
    add_process.join()
    # 代码执行到此说明添加数据的子进程把任务执行完成了
    read_process.start()

创建子进程其实就是对主进程资源的拷贝

主进程会等待所有的子进程执行完成程序再退出

import multiprocessing
import time


# 工作任务
def work():
    for i in range(10):
        print("工作中...")
        time.sleep(0.3)

if __name__ == "__main__":
    # 创建子进程
    sub_prcess = multiprocessing.Process(target=work)
    # 查看进程的守护状态
    # print(sub_prcess.daemon)
    # 守护主进程,主进程退出子进程直接销毁,不再执行子进程里面的代码
    # sub_prcess.daemon = True
    # 启动进程执行对应的任务
    sub_process.start()

    # 主进程延时1s
    time.sleep(1)
    print("主进程执行完了")
    # 主进程退出之前把所有的子进程销毁
    sub_prcess.terminate()
    exit()

总结: 主进程会等待所有的子进程执行完成程序再退出

获取进程pid
# 获取进程pid
import multiprocessing
import time
import os


def work():
    # 获取当前进程编号
    print("work进程编号:", os.getpid())
    # 获取父进程编号
    print("work父进程编号:", os.getppid())

    for i in range(10):
        print("工作中...")
        time.sleep(1)
        # 扩展:根据进程编号杀死对应的进程
        # os.kill(os.getpid(), 9)

if __name__ == '__main__':
    # 获取当前进程的编号:
    print("当前进程编号:", multiprocessing.current_process().pid)

    # 创建子进程
    sub_process = multiprocessing.Process(target=work)
    # 启动进程
    sub_process.start()


    # 主进程执行打印信息操作
    for i in range(20):
        print("我在主进程中执行...")
        time.sleep(1)
运行结果:

当前进程编号: 624
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
work进程编号: 1312
work父进程编号: 624
工作中...
工作中...
工作中...
工作中...
工作中...
工作中...
工作中...
工作中...
工作中...
工作中...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...
我在主进程中执行...

***Repl Closed***
进程间通信——Queue

可以使用multiprocessing模块Queue实现多进程之间的数据传递,Queue本身是一个消息队列程序

import multiprocessing


if __name__ == "__main__":
    # 创建消息队列
    # 3:表示消息队列的最大个数
    queue = multiprocessing.Queue(3)
    # 存放数据
    queue.put(1)
    queue.put("hello")
    queue.put([1, 5, 8])
    # 总结:队列可以放入任意类型的数据
    
    # queue.put("xxx": "yyy")
    # 放入消息的时候不会进行等待,如果发现队列满了不能放入数据,那么会直接崩溃
    # 建议: 放入数据统一使用 put 方法
    # queue.put_nowait(("xxx": "yyy"))

    # 判断队列是否满了
    result = queue.full()
    print(result)
    # 判断队列是否为空,不靠谱(加延时可解决)
    result = queue.empty()
    print("队列是否为空:", result)

    # 获取队列消息个数
    size = queue.qsize()
    print("消息个数:", size)
    # 获取队列中的数据
    res = queue.get()
    print(res)
    # 如果队列空了,那么使用get方法会等待队列有消息以后再取值

消息队列Queue完成进程间通信的演练

import multiprocessing
import time


# 添加数据
def add_data(queue):
    for i in range(5):
        # 判断队列是否满了
        if queue.full():
            # 如果满了跳出循环,不再添加数据
            print("队列满了")
            break
        queue.put(i)
        print("add:", i)
        time.sleep(0.1)

def read_data(queue):
    while True:

        if queue.qsize == 0:
            print("队列空了")
            break

        result = queue.get()
        print("read:", result)


if __name__ == "__main__":
    # 创建消息队列
    queue = multiprocessing.Queue(3)

    # 创建添加数据的子进程
    add_process = multiprocessing.Process(target=add_data, args=(queue,))

    # 创建读取数据的子进程
    read_process = multiprocessing.Process(target=read_data, args=(queue,))

    # 启动进程
    add_process.start()
    # 主进程等待写入进程执行完成以后代码再继续往下执行
    add_process.join()
    read_process.start()
进程池Pool
进程池的概念

池子里面放的是进程,进程池会根据任务执行情况自动创建进程,而且尽量少创建进程,合理利用进程池中的进程完成多任务

当需要创建的子进程数量不多时,可以直接利用multiprocess中的Process动态生成多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocess模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求,但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务。

进程池同步执行任务

进程池同步执行任务表示进程池中的进程在执行任务的时候一个执行完成另外一个才能执行,如果没有执行完会等待上一个进程执行

进程池同步实例代码

import multiprocessing
import time


# 拷贝任务
def work():
    print("复制中...", multiprocessing.current_process().pid)
    time.sleep(1)

if __name__ == '__main__':
    # 创建进程池
    #3:进程池中进程的最大个数
    pool = multiprocessing.Pool(3)
    # 模拟大批量的任务,让进程池去执行
    for i in range(5):
        # 循环让进程池执行对应的work任务
        # 同步执行任务,一个任务执行完成以后另外一个任务才能执行
        pool.apply(work)
运行结果:

复制中... 6172
复制中... 972
复制中... 972
复制中... 1624
复制中... 1624

***Repl Closed***
进程池异步执行任务

进程池异步执行任务表示进程池中的进程同时执行任务,进程之间不会等待

进程池异步实例代码

import multiprocessing
import time


# 拷贝任务
def work():
    print("复制中...", multiprocessing.current_process().pid)

    # 获取当前进程的守护状态
    # 提示:使用进程池创建的进程时守护主进程的状态,默认自己通过Process创建的进程是不守护主进程的状态
    # print(multiprocessing.current_process().daemon)
    time.sleep(1)

if __name__ == '__main__':
    # 创建进程池
    # 3:进程池中进程的最大个数
    pool = multiprocessing.Pool(3)
    # 模拟大批量的任务,让进程池去执行
    for i in range(5):
        # 循环让进程池执行对应的work任务
        # 同步执行任务,一个任务执行完成以后另外一个任务才能执行
        # pool.apply(work)
        # 异步执行,任务执行不会等待,多个任务一起执行
        pool.apply_async(work)

    # 关闭进程池,意思告诉主进程以后不会有新的任务添加进来
    pool.close()
    # 主进程等待进程池执行完成以后程序再退出
    pool.join()
运行结果:

复制中... 1848
复制中... 12684
复制中... 12684
复制中... 6836
复制中... 6836

***Repl Closed***

个人独立博客:www.limiao.tech
微信公众号:TechBoard


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容