使用FuzzyWuzzy 模糊匹配字符串

FuzzyWuzzy 简介

FuzzyWuzzy 是一个简单易用的模糊字符串匹配工具包。它依据 Levenshtein Distance 算法 计算两个序列之间的差异。

Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

项目地址:https://github.com/seatgeek/fuzzywuzzy

环境依赖

支持的测试工具

  • pycodestyle
  • hypothesis
  • pytest

安装

使用 PIP 通过 PyPI 安装

    pip install fuzzywuzzy

or the following to install python-Levenshtein too

    pip install fuzzywuzzy[speedup]

使用 PIP 通过 Github 安装

    pip install git+git://github.com/seatgeek/fuzzywuzzy.git@0.17.0#egg=fuzzywuzzy

或者添加你的 requirements.txt 文件 (然后运行 pip install -r requirements.txt)

    git+ssh://git@github.com/seatgeek/fuzzywuzzy.git@0.17.0#egg=fuzzywuzzy

使用 GIT 手工安装

    git clone git://github.com/seatgeek/fuzzywuzzy.git fuzzywuzzy
    cd fuzzywuzzy
    python setup.py install

用法

    >>> from fuzzywuzzy import fuzz
    >>> from fuzzywuzzy import process

简单匹配(Simple Ratio)

    >>> fuzz.ratio("this is a test", "this is a test!")
        97

非完全匹配(Partial Ratio)

    >>> fuzz.partial_ratio("this is a test", "this is a test!")
        100

忽略顺序匹配(Token Sort Ratio)

    >>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
        91
    >>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
        100

去重子集匹配(Token Set Ratio)

    >>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
        84
    >>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
        100

Process

用来返回模糊匹配的字符串和相似度。

    >>> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
    >>> process.extract("new york jets", choices, limit=2)
        [('New York Jets', 100), ('New York Giants', 78)]
    >>> process.extractOne("cowboys", choices)
        ("Dallas Cowboys", 90)

你可以传入附加参数到 extractOne 方法来设置使用特定的匹配模式。一个典型的用法是来匹配文件路径:

    >>> process.extractOne("System of a down - Hypnotize - Heroin", songs)
        ('/music/library/good/System of a Down/2005 - Hypnotize/01 - Attack.mp3', 86)
    >>> process.extractOne("System of a down - Hypnotize - Heroin", songs, scorer=fuzz.token_sort_ratio)
        ("/music/library/good/System of a Down/2005 - Hypnotize/10 - She's Like Heroin.mp3", 61)

已知移植

FuzzyWuzzy 已经被移植到其他语言环境,我们已知的有:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容