HBase深入(二)结合MapReduece

HBase, MapReduce, and the CLASSPATH

$HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath` \ ${HADOOP_HOME}/bin/hadoop jar ${HBASE_HOME}/lib/hbase-mapreduce-VERSION.jar \ org.apache.hadoop.hbase.mapreduce.RowCounter usertable

MapReduece example

//初始化Configuration,该类主要是读取mapreduce系统配置信息,这些信息包括hdfs还有mapreduce,也就是安装hadoop时候的配置文件例如:core-site.xml、hdfs-site.xml和mapred-site.xml等等文件里的信息
package com.beifeng.senior.hadoop.hbase;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class User2BasicMapReduce extends Configured implements Tool {
    
    // Mapper Class
    public static class ReadUserMapper extends TableMapper<Text, Put> {

        private Text mapOutputKey = new Text();

        @Override
        public void map(ImmutableBytesWritable key, Result value,
                Mapper<ImmutableBytesWritable, Result, Text, Put>.Context context)
                        throws IOException, InterruptedException {
            // get rowkey
            String rowkey = Bytes.toString(key.get());

            // set
            mapOutputKey.set(rowkey);

            // --------------------------------------------------------
            Put put = new Put(key.get());

            // iterator
            for (Cell cell : value.rawCells()) {
                // add family : info
                if ("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))) {
                    // add column: name
                    if ("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
                        put.add(cell);
                    }
                    // add column : age
                    if ("age".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))) {
                        put.add(cell);
                    }
                }
            }

            // context write
            context.write(mapOutputKey, put);
        }

    }

    // Reducer Class
    public static class WriteBasicReducer extends TableReducer<Text, Put, //
    ImmutableBytesWritable> {

        @Override
        public void reduce(Text key, Iterable<Put> values,
                Reducer<Text, Put, ImmutableBytesWritable, Mutation>.Context context)
                        throws IOException, InterruptedException {
            for(Put put: values){
                context.write(null, put);
            }
        }

    }

    // Driver
    public int run(String[] args) throws Exception {
        
        // create job
        Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName());
        
        // set run job class
        job.setJarByClass(this.getClass());
        
        // set job
        Scan scan = new Scan();
        scan.setCaching(500);        // 1 is the default in Scan, which will be bad for MapReduce jobs
        scan.setCacheBlocks(false);  // don't set to true for MR jobs
        // set other scan attrs

        // set input and set mapper
        TableMapReduceUtil.initTableMapperJob(
          "user",        // input table
          scan,               // Scan instance to control CF and attribute selection
          ReadUserMapper.class,     // mapper class
          Text.class,         // mapper output key
          Put.class,  // mapper output value
          job //
         );
        
        // set reducer and output
        TableMapReduceUtil.initTableReducerJob(
          "basic",        // output table
          WriteBasicReducer.class,    // reducer class
          job//
         );
        
        job.setNumReduceTasks(1);   // at least one, adjust as required
        
        // submit job
        boolean isSuccess = job.waitForCompletion(true) ;
        
        
        return isSuccess ? 0 : 1;
    }
    
    
    public static void main(String[] args) throws Exception {
        // get configuration
        Configuration configuration = HBaseConfiguration.create();
        
        // submit job
        int status = ToolRunner.run(configuration,new User2BasicMapReduce(),args) ;
        
        // exit program
        System.exit(status);
    }

}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容