OLAP引擎

OLAP(Online analytical processing),即联机分析处理,主要用于支持企业决策管理分析。

核心概念

1) 维

维(Dimension):人们观察事物的视角,如时间、地理位置、年龄和性别等,是单一角度概念。

维的层次(Lever of Dimension):表示维度概念基础上进一步的细分,如时间可以细分为年、季度、月三个层次。

维成员(Member of Dimension):表示维不可再细分的原子取值,如时间维的成员可以是2019年1月10日。

度量(Measure):表示在这个维成员上的取值。

除了维的基本概念,还有多维分析的分析操作。

2)操作

下探(Drill down):维度是有层次的,下探表示进入维度的下一层,将汇总数据拆分到下一层所在细节数据信息,如下图从第二季度下探到看4、5、6月的明细数据。

上钻(Drill up): 下探的反向操作,回到更高汇聚层的汇总数据。

切片(Slice):切片可以理解成把立体按某一个维度进行切分,就可以看两维数据,如图中按电子产品切分,看到的是时间和地理位置关系的二维数据。

切块(Dice):相对于切片是按一个点切分,切块就是按一个范围(区间)来做切分。

旋转(Pivot):维的行列位置交换,换一个视角分析数据。

OLAP按存储器的数据存储格式分为ROLAP、MOLAP和HOLAP

MOLAP(Multi-dimensional OLAP):Kylin、Druid(其中druid用于实时在线分析场景)

以多维数组(Multi-dimensional Array)存储模型的OLAP,是OLAP发源最初的形态,某些方面也等同于OLAP。它的特点是数据需要预计算(pre-computaion),然后把预计算之后的结果(cube)存在多维数组里。

优点:

cube包含所有维度的聚合结果,所以查询速度非常快。

计算结果数据占用的磁盘空间相对关系型数据库更小

缺点:

空间和时间开销大。update cube的时间跟计算维度(degree)相关,随着维度增加计算时间大幅增加,此外预计算还会造成数据库占用急剧膨胀。

查询灵活度比较低。需要提前设计维度模型,查询分析的内容仅限于这些指定维度,增加维度需要重新计算。

ROLAP(Relational OLAP):Presto、impala (都是基于MPP架构的OLAP分析框架)

基于关系模型存放数据,一般要求事实表(fact table)和维度表(dimensition table)按一定关系设计,它不需要预计算,使用标准SQL就可以根据需要即时查询不同维度数据。

优点

扩展性强,适用于维度数量多的模型,MOLAP对于维度多的模型预计算慢,空间占用大。

更适合处理non-aggregate事实,例如文本描述

基于row数据更容易做权限管理

缺点

因为是即时计算,查询响应时间一般比预计算的MOLAP长。

HOLAP

业界还没有一致的定义,它是MOLAP和ROLAP类型的混合运用,细节的数据以ROLAP的形式存放,更加方便灵活,而高度聚合的数据以MOLAP的形式展现,更适合于高效的分析处理。公司使用HOLAP的目的是根据不同场景来利用不同OLAP的特性。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342