基于Redis和Lua实现分布式令牌桶限流

限流是什么

通过某种手段对某个时间段的并发访问请求进行流量限制,一旦流量达到限制阈值则可以拒绝服务,排队或等待,目的是防止系统因大流量或突发流量导致服务不可用或崩溃,是一种确保系统高可用的手段。

限流的简单了解

对外限流:

电商秒杀(因秒杀业务特性,需要限流):到达开卖时间瞬间大流量,此时下单人数>商品库存,服务器不可能同时全部消费,需要进行限流,卖完了之后就拒绝后续下单请求。

微博热搜(因产品特性,需要限流):突然出现了几个大瓜,那微博是不是突然流量激增,重灾区就是微博热搜,此时所有服务满载运行,必须有个限流策略保证服务的高可用。

防止恶意攻击(突发恶意攻击,需要限流):比如某一个 API 被疯狂请求,或者某一个 IP 疯狂请求公司的 API,此时就需要进行限流,常见措施是先告警,再限流。为了不影响其他服务的正常使用,需要设计限流方案。

API有偿调用:用户认证+限流策略,顾名思义没啥好说的,一般是 SAAS 公司最常见的业务,常见于 OPEN-API 相关的小组负责的。

对内限流:

BUG预防:核心服务的高可用是十分重要的,千万不能挂。如果内部应用出现 bug,一直调用核心服务,核心服务就有被击垮的风险,限流也十分重要。

缓存雪崩:请求直接打到 DB,那就哦豁完蛋了,所以需要根据业务场景来实现限流后是排队还是丢弃。

限流解决了什么问题

保证服务高可用,牺牲一部分的流量,换取服务的可用性。对于被限流器直接作用的应用来说,除了保证自身不被流量击垮,还保护了依赖它的下游应用。

限流带来的问题

任何技术都是双刃剑,没有绝对的好用,能带来优点必然也会带来问题。

限流组件保证了高可用,牺牲了性能,增加了一层 IO 环节的开销,单机限流在本地,分布式限流还要通过网络协议。

限流组件保证了高可用,牺牲了一致性,在大流量的情况下,请求的处理会出现延迟的情况,这种场景便无法保证强一致性。特殊情况下,还无法保证最终一致性,部分请求直接被抛弃。

限流组件拥有流控权,若限流组件挂了,会引起雪崩效应,导致请求与业务的大批量失败。

引入限流组件,增加系统的复杂程度,开发难度增加,限流中间件的设计本身就是一个复杂的体系,需要综合业务与技术去思考与权衡,同时还要确保限流组件本身的高可用与性能,极大增加工作量,甚至需要一个团队去专门开发。

设计限流组件本身需要考虑的点

如果我来设计限流组件,我大致会确认如下几个点:

1.明确限流器的目的:

用在哪些模块?

应对哪些场景下的什么问题?

是单机限流还是分布式限流?

确定限流模块的使用层面?例如:单应用维度、业务域维度、网关维度

2.明确限流器的维度,例如 IP 维度,用户授权 token 维度,API 维度等

3.怎么保证限流组件的高可用?

4.怎么解决使用限流组件后带来的一致性问题?

5.怎么缩小限流器的粒度,实现平滑限流?

常见的限流实现

单机

基于Java 并发工具

(信号量 / concurrentHashMap)

基于Google Guava RateLimiter

稳定模式(SmoothBursty:令牌生成速度恒定) / 渐进模式(SmoothWarmingUp:令牌生成速度缓慢提升直到维持在一个稳定值)

分布式

(Redis + Lua / Nginx + Lua)

常见限流器种类

这四种限流器虽然网上介绍得很多,但是我写给自己看的 ^_^,自己要每次遇到都能够脱口而出,而不是“我经常看到过,但是我记不起来了”或者“我知道是什么意思,但是我就是说不出来,也说不清楚”。后续, 等API网关的限流模块代码完成后, 对着代码和实践会仔细展开说说 ~

计数器(固定窗口限流器)

滑动窗口限流器

令牌桶限流器

漏桶限流器

模拟的场景

模拟API 网关中的一个 API 接口在某个时刻突然接收到 100 个并发请求,但是该 API 配置的令牌桶限流器每1分钟生成一个,每次限流间隔为 1 小时,限流上限为 60,则通过代码模拟出最终效果,并输出日志。

实现的效果

构建请求

通过参数可知,限流器的类别LimiterType选择的是令牌桶,限流的时间单位timeUnit是每小时,每个限流时间内的令牌桶内令牌的最大数量value是 60.


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容