Flink学习笔记:Operators之Process Function

本文为《Flink大数据项目实战》学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程:

Flink大数据项目实战:http://t.cn/EJtKhaz

 Process Function

1.1分层API

Flink提供三层API. 每个API在简洁性和表达之间提供不同的权衡,并针对不同的用例

1.SQL/Table API (dynamic tables)

2.DataStream API(streams, windows)

3.ProcessFunction(event,state,time)

1.2ProcessFunction

不要跟ProcessWindowFunction混为一谈。

ProcessFunction是一个低阶的流处理操作,它可以访问流处理程序的基础构建模块:

1.事件(event)(流元素)。

2.状态(state)(容错性,一致性,仅在keyed

stream中)。

3.定时器(timers)(event

time和processing time,仅在keyed stream中)。

ProcessFunction可以看作是一个具有keyed

state 和 timers访问权的FlatMapFunction

1.通过RuntimeContext访问keyed state。

2.计时器允许应用程序对处理时间和事件时间中的更改作出响应。对processElement(…)函数的每次调用都获得一个Context对象,该对象可以访问元素的event time timestamp和TimerService。

3.TimerService可用于为将来的event/process

time瞬间注册回调。当到达计时器的特定时间时,将调用onTimer(…)方法。在该调用期间,所有状态都再次限定在创建计时器时使用的键的范围内,从而允许计时器操作键控状态。

1.3低阶join(CoProcessFunction)

CoProcessFunction实现对两个输入的低阶操作,它绑定到两个不同的输入流,分别调用processElement1(…)和processElement2(…)对两个输入流的数据进行处理。

实现低阶join通常遵循此套路:

1.为一个(或两个)输入创建一个状态对象。

2.当从输入源收到元素时,更新状态。

3.从另一个输入接收元素后,检索状态并生成连接的结果。

1.4KeyedProcessFunction

KeyedProcessFunction作为ProcessFunction的扩展,在其onTimer(…)方法中提供对定时器对应key的访问。

2. Timers

2.1TimerService

processing-time/event-time timer都由TimerService在内部维护并排队等待执行,仅在keyed stream中有效。

由于Flink对(每个key+timestamp)只维护一个计时器。如果为相同的timestamp注册了多个timer ,则只调用onTimer()方法一次。

Flink保证同步调用onTimer()和processElement()。因此用户不必担心状态的并发修改。

2.2容错

Timer具有容错和checkpoint能力(基于flink app的状态)。从故障恢复或从savepoint启动应用程序时,Timer将被恢复。

大量计时器会增加检查点时间,因为计时器是检查点状态的一部分。

2.3计时器合并

由于Flink对每个键和时间戳只维护一个计时器,因此可以通过降低计时器频率来合并计时器,从而减少计时器的数量。 event-time timer只会在watermarks到来时触发。

关注加QQ获取更多
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,565评论 6 525
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,696评论 3 406
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,935评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,327评论 1 303
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,338评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,760评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,085评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,091评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,656评论 1 327
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,657评论 3 348
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,767评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,360评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,088评论 3 341
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,493评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,654评论 1 278
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,374评论 3 383
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,841评论 2 367

推荐阅读更多精彩内容