高数积分推导整理

1 出自习题

  1. \displaystyle \int_{0}^{\frac{\pi}{4}}\sec^3\theta d{\theta}

分析:需要先利用凑微分变形,发现该式具有循环积分的结构,于是设原式为I,即可求解。

解答:
\begin{align} &\displaystyle \int_{0}^{\frac{\pi}{4}}\sec^3\theta d{\theta}\\ =& \displaystyle \int_{0}^{\frac{\pi}{4}}\sec \theta d(\tan \theta)\\ =& \left. \sec \theta \tan \theta \right|_{0}^{\frac{\pi}{4}} -\displaystyle \int_{0}^{\frac{\pi}{4}}(\sec^3 \theta-\sec \theta)d\theta \end{align}
假设I=\displaystyle \int_{0}^{\frac{\pi}{4}}\sec^3\theta d{\theta},则:
\begin{align} I&=\left. \sec \theta \tan \theta \right|_{0}^{\frac{\pi}{4}}-I+\ln(\sec \theta+\tan\theta)|_{0}^{\frac{\pi}{4}}\\ 2I&=\sqrt{2}+\ln(\sqrt{2}+1)\\ I&=\frac{\sqrt{2}}{2}+\frac{\ln(\sqrt{2}+1)}{2} \end{align}

  1. \displaystyle \int \frac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x

分析:超大计算量警告!(对个人来说)

先看一下积分结构——分母次幂比分子高的真分式型有理分式积分,但分母有个平方的情况下,通常是采用灵活的拆项来求解;此积分需要先拆分成三项,其中,第三项积分的求解是难点和计算细节比较多的地方。

解答

(1) 拆解
\begin{align} I=&\displaystyle \int \frac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x\\ =&- \displaystyle \int \frac{x^2+x+1}{(x^2+x+1)^2}\mathrm{d}x+ \frac{1}{2} \displaystyle \int \frac{2x+1}{(x^2+x+1)^2}\mathrm{d}x- \frac{3}{2} \displaystyle \int \frac{1}{(x^2+x+1)^2}\mathrm{d}x \end{align}
(2) 求解\displaystyle \int \frac{1}{(x^2+x+1)^2}\mathrm{d}x
\begin{align} A=& \displaystyle \int \frac{1}{(x^2+x+1)^2}\mathrm{d}x\\ =& \displaystyle \int \frac{1}{[(x+\frac{1}{2})^2+\frac{3}{4}]^2}\mathrm{d}x\\ \xlongequal[]{t=x+\frac{1}{2}}& \displaystyle \int \frac{t}{t(t^2+\frac{3}{4})^2}\mathrm{d}t \\ =&\frac{1}{2} \displaystyle \int \frac{1}{t(t^2+\frac{3}{4})^2}\mathrm{d}(t^2+\frac{3}{4})\\ =&\frac{1}{2}\left\{ \frac{1}{t(t^2+\frac{3}{4})}- \displaystyle \int \left[ (-\frac{1}{t^2})\cdot \frac{1}{t^2+\frac{3}{4}}-\frac{4}{(t^2+ {3\over 4})^2} \right]\mathrm{d}t \right\}\\ =&\frac{1}{2t(t^2+\frac{3}{4})}+{1 \over 2}\cdot {4 \over 3} \displaystyle \int\left({1\over t^2}-{1\over {t^2+{3\over4}}} \right)\mathrm{d}t+2\displaystyle \int \frac{t}{t(t^2+\frac{3}{4})^2}\mathrm{d}t \end{align}

可见,这是一个循环积分,调整左右项可得。不过,这里提供一个法二,如果采用-{1\over2}\displaystyle \int \frac{1}{t}\mathrm{d}(\frac{1}{(t^2+\frac{3}{4})})的凑微分形式进行分部积分,则不会出现循环积分。

\begin{align} A=& \displaystyle \int \frac{1}{(x^2+x+1)^2}\mathrm{d}x\\ \xlongequal[]{t=x+\frac{1}{2}}& \displaystyle \int \frac{t}{t(t^2+\frac{3}{4})^2}\mathrm{d}t \\ =&-\frac{1}{2t(t^2+\frac{3}{4})}+{2\over3}({1\over t}+{2\over \sqrt{3}}\arctan \frac{2t}{\sqrt 3})+C\\ =&-\frac{1}{2(x+{1\over2})(x^2+x+1)}+{2\over3}({1\over (x+{1\over2})}+{2\over \sqrt{3}}\arctan \frac{2x+1}{\sqrt 3})+C \end{align}

(3) 合并原总式
\begin{align} I=&\displaystyle \int \frac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x\\ =&- \displaystyle \int \frac{x^2+x+1}{(x^2+x+1)^2}\mathrm{d}x+ \frac{1}{2} \displaystyle \int \frac{2x+1}{(x^2+x+1)^2}\mathrm{d}x- \frac{3}{2} \displaystyle \int \frac{1}{(x^2+x+1)^2}\mathrm{d}x\\ =&-{2\over \sqrt{3}}\arctan \frac{2x+1}{\sqrt 3}-{1\over2}\cdot \frac{1}{x^2+x+1}-{3\over2} \left[-\frac{1}{2(x+{1\over2})(x^2+x+1)}+{2\over3}({1\over (x+{1\over2})}+{2\over \sqrt{3}}\arctan \frac{2x+1}{\sqrt 3}) \right]+C\\ =&-{4\over \sqrt{3}}\arctan \frac{2x+1}{\sqrt 3}-\frac{x+1}{x^2+x+1}+C \end{align}


2 基本积分公式推导

整点secx的积分、根号下x平方加1的积分。(凑点搜索关键词)

1

\displaystyle \int \sec \theta d\theta=\ln|\sec \theta +\tan \theta|+C

分析:变形后换元

过程:
\begin{align} &\displaystyle \int \sec \theta d\theta\\ =&\displaystyle \int \frac{\cos \theta}{\cos^2\theta} d\theta\\ =&\displaystyle \int \frac{d(\sin \theta)}{1-\sin^2\theta} \\ \xlongequal[]{t=sin\theta}& \displaystyle \int \frac{dt}{1-t^2}\\ =& \frac{1}{2} \displaystyle \int \frac{dt}{1-t} + \frac{1}{2} \displaystyle \int \frac{dt}{1+t}\\ =& -\frac{1}{2}\ln|1-t|+\frac{1}{2}\ln |1+t|\\ =& \frac{1}{2} \ln \left| \frac{1+t}{1-t} \right|\\ \xlongequal[]{t=sin\theta}& \frac{1}{2} \ln \left| \frac{1+\sin\theta}{1-\sin \theta} \right|\\ =& \frac{1}{2} \ln \left| \frac{(1+\sin\theta)^2}{\cos^2 \theta} \right|\\ =& \ln \left| \frac{1+\sin\theta}{\cos \theta} \right|\\ =& \ln|\sec \theta +\tan \theta| +C \end{align}


2

\displaystyle \int \frac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C

分析:通过 \tan^2\theta+1=\sec^2\theta 这一等式关系入手,利用换元解决。

过程:
\begin{align} &\displaystyle \int \frac{1}{\sqrt{x^2+a^2}}dx\\ =& {1\over a} \displaystyle \int \frac{1}{\sqrt{({x \over a})^2+1}}dx\\ \xlongequal[]{{x\over a}=tan\theta}& \displaystyle \int \sec\theta d\theta\\ =& \displaystyle \int {1 \over \cos^2\theta}d(\sin\theta)\\ =& \displaystyle \int {1 \over {1-\sin^2\theta} }d(\sin\theta)\\ =& {1\over 2} \displaystyle \int \left({1\over {1+\sin\theta}}+{1\over {1-\sin\theta}} \right) d(\sin\theta)\\ =& {1\over 2} \ln{\frac{1+\sin\theta}{1-\sin\theta}}+C\\ =& {1\over 2} \ln{\frac{(1+\sin\theta)^2}{\cos^2\theta}}+C\\ =& \ln(\sec\theta+\tan\theta)+C\\ =& \ln(\sqrt{ {x^2\over a^2}+1 }+ {x\over a})+C\\ =& \ln[{1\over a}{(\sqrt{ x^2+a^2 }+ x )}]+C\\ =& \ln{(\sqrt{ x^2+a^2 }+ x )}+\ln {1\over a}+ C\\ =& \ln{(\sqrt{ x^2+a^2 }+ x )}+C \end{align}

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。