概述
上一篇文章 Android 中高级面试必知必会 中 JAVA 部分的第一部分就是容器,容器是 JAVA 中非常重要的一个部分,也是面试时考察基础知识很重要的一环,我们首先来看下图,关于容器部分的总体框架
集合框架主要分为两大类: Collection 和 Map。
Collection 是 List、Set 等集合高度抽象出来的接口,它包含了这些集合的基本操作,它主要又分为两大部分:List和Set。
Map 是一个映射接口,其中的每个元素都是一个 key-value 键值对,同样抽象类 AbstractMap 通过适配器模式实现了 Map 接口中的大部分函数。像我们常用的 HashMap、LinkedHashMap 都是继承自 Map 接口。
今天我们主要讲解容器中的 HashMap 部分。
问题
我们首先来看下面几个问题,读者可以自己试着回答一下。
1、 HashMap 的实现原理?底层数据结构?
2、 HashMap 的扩容,扩容因子?
3、 什么是哈希碰撞,如何解决哈希碰撞?
4、 HashMap 是线程安全的吗?
HashMap
要讲到 HashMap,我们主要分为以下主要模块进行讲解。
哈希
Hash ,一般直接音译为“哈希”或“散列”,就是把任意长度的输入,通过散列算法,变化为固定长度的输出,输出值则称为散列值。
常见的 Hash 函数有一下几种。
- 直接定址法:直接以关键字 k 或者 k 加上某个常数作为哈希地址。
- 数字分析法:提取关键字中比较均匀的数字作为哈希地址。
- 除留余数法:用关键字 k 初一某个不大于哈希表长度 m 的 数 p ,将所得余数作为哈希表地址。
- 伪随机数法:采用一个伪随机数当作哈希函数。
哈希碰撞
两个不同的输入值,经过同一散列函数计算出的散列值相同的现象叫做哈希碰撞。
常见的解决哈希碰撞的方法有如下几种:
- 开放地址法:一旦发生冲突,就去寻找下一个空的散列地址,只要散列表足够大,空的散列地址就能够找到,并将记录存入。
- 链地址法:将哈希表的每个单元作为链表的头结点,所有哈希地址为 i 的元素构成一个同义词链表。即发生冲突时,就把该关键字链放在以该单位为头结点的链表的尾部。
- 再哈希法:当哈希地址出现冲突后,用其他函数计算另一个哈希函数的地址,直到冲突不再产生为止。
- 建立公共溢出区:将哈希表分为基本表和溢出表两部分,发生冲突的元素都放入溢出表中。
实现原理
在 JDK1.6,JDK1.7 中,HashMap 采用数组+链表实现,即使用链表处理冲突,同一 hash 值的链表都存储在一个链表里。但是当位于一个桶中的元素较多,即 hash 值相等的元素较多时,通过 key 值依次查找的效率较低。
而 JDK1.8 中,HashMap 采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。
扩容
加载因子(默认0.75):为什么需要使用加载因子,为什么需要扩容呢?
因为如果填充比很大,说明利用的空间很多,如果一直不进行扩容的话,链表就会越来越长,这样查找的效率很低,因为链表的长度很大(当然最新版本使用了红黑树后会改进很多),扩容之后,将原来链表数组的每一个链表分成奇偶两个子链表分别挂在新链表数组的散列位置,这样就减少了每个链表的长度,增加查找效率。
构造 hash 表时,如果不指明初始大小,默认大小为 16(即 Node 数组大小 16),如果 Node[] 数组中的元素达到(填充比 * Node.length)重新调整 HashMap 大小 变为原来 2 倍大小,扩容很耗时
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
/*如果旧表的长度不是空*/
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
/*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
/*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/
newThr = oldThr << 1; // double threshold
}
/*如果旧表的长度的是0,就是说第一次初始化表*/
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;//新表长度乘以加载因子
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
/*下面开始构造新表,初始化表中的数据*/
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;//把新表赋值给table
if (oldTab != null) {//原表不是空要把原表中数据移动到新表中
/*遍历原来的旧表*/
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
/*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/
else { // preserve order保证顺序
////新计算在新表的位置,并进行搬运
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;//记录下一个结点
//新表是旧表的两倍容量,实例上就把单链表拆分为两队,
//e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {//lo队不为null,放在新表原位置
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
HashMap 的 get 方法
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
/*如果旧表的长度不是空*/
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
/*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
/*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/
newThr = oldThr << 1; // double threshold
}
/*如果旧表的长度的是0,就是说第一次初始化表*/
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;//新表长度乘以加载因子
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
/*下面开始构造新表,初始化表中的数据*/
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;//把新表赋值给table
if (oldTab != null) {//原表不是空要把原表中数据移动到新表中
/*遍历原来的旧表*/
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
/*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/
else { // preserve order保证顺序
////新计算在新表的位置,并进行搬运
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;//记录下一个结点
//新表是旧表的两倍容量,实例上就把单链表拆分为两队,
//e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {//lo队不为null,放在新表原位置
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
HashMap 中的 put 方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab;
Node<K,V> p;
int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
/*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
/*表示有冲突,开始处理冲突*/
else {
Node<K,V> e;
K k;
/*检查第一个Node,p是不是要找的值*/
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
/*指针为空就挂在后面*/
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构,
//treeifyBin首先判断当前hashMap的长度,如果不足64,只进行
//resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
/*如果有相同的key值就结束遍历*/
if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
/*就是链表上有相同的key值*/
if (e != null) { // existing mapping for key,就是key的Value存在
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;//返回存在的Value值
}
}
++modCount;
/*如果当前大小大于门限,门限原本是初始容量*0.75*/
if (++size > threshold)
resize();//扩容两倍
afterNodeInsertion(evict);
return null;
}
HashMap 是否为线程安全?
关于 HashMap 线程不安全这一点,《Java 并发编程的艺术》一书中是这样说的
HashMap 在并发执行 put 操作时会引起死循环,导致 CPU 利用率接近 100%。因为多线程会导致 HashMap 的 Node 链表形成环形数据结构,一旦形成环形数据结构,Node 的 next 节点永远不为空,就会在获取 Node 时产生死循环。
其实死循环并不是发生在put操作时,而是发生在扩容时。详细的解释可以看下面几篇博客:
Java HashMap 的死循环
HashMap在java并发中如何发生死循环
如何线程安全的使用 HashMap?
- Hashtable
- ConcurrentHashMap
- Synchronized Map
//Hashtable
Map<String, String> hashtable = new Hashtable<>();
//synchronizedMap
Map<String, String> synchronizedHashMap = Collections.synchronizedMap(new HashMap<String, String>());
//ConcurrentHashMap
Map<String, String> concurrentHashMap = new ConcurrentHashMap<>();
具体实现原理在后续文章中会有所涉猎,请持续关注。
之后会就行更新 Java 中的集合相关内容,我会根据内容多少决定分几篇文章去讲,大致内容如我整理脑图
为避免失联或想第一时间查看我的文章更新,可关注我的微信公众号 KevenZheng ,之后会陆续更新上述目录的内容,敬请关注。
如需转载,请联系我或注明出处!