LabVIEW色彩分类识别(基础篇—15)

色彩分类(Color Classification)用于根据样本的颜色信息对其进行分类识别。与单色目标的分类识别类似,色彩分类过程也包括训练和分类两个阶段。

训练阶段主要用来基于各种彩色样本创建分类器。它从每个参与训练的样本中提取色彩特征,并将该特征与类标签进行关联以备后用。

分类阶段则主要用于从待分类图像中提取颜色特征,并参照分类器信息对其分类。分类的方法可采用最邻近法、K-邻近法、最小平均距离法或支持向量机分类法。

色彩分类的特征提取过程并不直接使用色谱,而是基于HSL空间构建分辨率可选的(高、中、低3挡)的一维色彩特征向量。它先将彩色样本图像转换到HSL色彩空间,然后计算彩色样本的色调、饱和度和亮度分量的直方图。对于每个由单字节表示的颜色分量直方图,保留色调和饱和度分量直方图中的256个值对应的信息,但是只保留亮度分量直方图中8个亮度值相关的信息。通过这种对亮度分量直方图的抑制,色彩特征向量中的颜色信息会更突出,亮度信息会被抑制在8种灰度之内。将包含256个色调信息和256个饱和度信息的两个直方图,与包含8个亮度信息的直方图进行组合,即可得到高分辨率的色彩特征向量。

中分辨率和低分辨率色彩特征向量是通过先提取高分辨率色彩特征向量,然后再对其应用动态遮罩(Dynamic Mask)获得的。动态遮罩基于参与训练的样本创建,用于从高分辨率色彩特征向量中选出最能代表某个类的色调和饱和度直方图信息。在对于每个新添加的彩色样本学习时,动态遮罩通过下述过程被创建或更新:

对于每个类,基于其中每个样本的色调和饱和度的直方图,计算该类的平均色调和饱和度直方图。

基于所有类的平均色调和饱和度直方图的均值直方图,计算各类的平均色调和饱和度直方图上元素值的标准差。

从类平均色调和饱和度直方图元素值中依次选出128个标准偏差最高的值对应的位置作为遮罩,用于生成中分辨率色彩特征向量。或者依次选出64个标准偏差最高的值对应的位置作为遮罩,用于生成低分辨率色彩特征向量。

扫描各类的动态遮罩位置对应的值,确保其中至少包含一个最大色调和一个最大饱和度直方图值。

Nl Vision提供了两种色彩训练方法,一是使用NI色彩分类训练器离线完成色彩训练(位于:National Instruments\Vision\Utility\Color Classification Training Interface\Color Classification Training.exe),二是使用程序代码在运行时完成色彩训练。

NI色彩分类训练器可以在进行色彩分类之前,先从多个采集到的彩色样本图像中提取高分辨率的色彩特征,并将该特征与类标签进行关联。若选择了中分辨率或低分辨率,则训练过程还会对高分辨率的色彩特征施加动态遮罩过程,获得相应分辨率的色彩特征向量。随后,训练过程会将样本的特征向量、样本分类方法连同各个类的动态遮罩等信息一并保存在后缀名为clf的色彩分类器文件中。这样在后续色彩分类过程中,就可从该文件中读取这些信息,对彩色目标进行识别和分类。

下图显示了使用NI色彩分类训练器为洗手液分类系统训练色彩样本时的程序界面。使用该工具可以打开收集到的彩色洗手液样本图像,从中选择蓝色、绿色或白色的瓶盖分别作为类样本进行训练。训练过程中,可对样本进行编辑或删除,训练完成后得到的样本色彩特征可保存在clf文件中以备后用。

Nl Vision还提供了对彩色样本图像进行训练和分类的函数。它们位于LabVIEW的视觉与运动→Machine Vision→Machine Learning→Classification函数选板中,如下图所示:

函数说明及使用可参见帮助手册:

通过使用NI Vision色彩分类函数对洗手液进行分类的实例,了解色彩分类的使用,程序设计思路如下所示:

程序先用IMAQ Read Classifier File从NI色彩分类训练器创建的色彩分类器文件Soap.clf中读取学习到的样本特征等信息;

随后While循环中的代码逐一取出待测图像文件夹中的图像,由IMAQ Classify或IMAQClassify Color Advanced对指定ROI区域的图像色彩进行分类,返回其类别归属及分类和识别分值等信息。IMAQ Overlay Text可以在图像上以无损图层的方式添加待测图像的类名;

当用户单击STOP按钮退出While循环后,程序会丢弃会话,释放内存,然后退出程序。

程序实现如下所示:

运行程序,显示了分类程序检测到绿色洗手液瓶子时的情况。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容