2018-11-19 Neo4j百万级数据导入只能用neo4j-import

image.png

业务需要使用Neo4j出数据关系展示图,数据库里有2张表通过一个字段进行关联,数据量是90万和500万,关系量是150w;

从一开始使用REST API 循环导入,但创建节点没有问题,但是要通过将数据导入内存再生出关联关系就出现内存不足了;

后来通过cypher 语句,load csv 来创建节点和关系,创建节点时,数据超过20w条就不行了,创建关系更是慢的不行,注意:windows下load csv文件路径为:file:/d:/csv/company.csv,官网上写的貌似不行;

以上2种方法可以对少量数据进行操作。
百万级数据可以使用下面这种方法:
1、先生成csv文件,按格式来:

文件名:company-header.csv
内容:
regno,name,id:ID
文件名:company.csv
内容:
1234,apple,c001
文件名:person.csv
内容:
cerno,name,id:ID
3201,jobs,p001
文件名:relationship.csv
内容:
:START_ID,:END_ID,:TYPE
p001,c001,creator

然后通过neo4j官方提供的Neo4jImport来操作,具体指令是:
cmd下先进入Neo4j文件夹,执行命令:bin\neo4jimport –into data/graph.db –nodes:Company company-header.csv,company.csv –nodes:Person person.csv –relationships relationship.csv

注意文件地址可以使用相对地址,也可以使用绝对地址

上面是2中风格的写法,文件头和文件内容分开写,头和内容写一起,分开写的好处是修改文件头的时候,不用打开文件内容,如果文件内容太大,打开容易卡死;

文件头中:ID是用来创建关系时的连接点,:START_ID是关系起始点;
:END_ID是关系结束点;:TYPE是关系类型;
上列中还有没用到的是:LABEL是用来创建标签的,一组数据可以设置多个标签,用分号分隔;

这是我导入数据的用时:

400W节点,180W关系,用时30s
以上这种方式只能一次创建好数据库,该命令不能分批对一个数据库进行操作

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容