Python 读取并显示图片的两种方法

       在 python 中除了用 opencv,也可以用 matplotlib 和 PIL 这两个库操作图片,这两个库在Anaconda3中都默认安装了。 matpoltlib感觉更加侧重于图形绘制,而PIL侧重于图像处理。有的时候两个库要同时用,这就涉及到图片格式的转化

一、matplotlib

1. 显示图片

importmatplotlib.pyplot as plt#plt 用于显示图片

importmatplotlib.image as mpimg#mpimg 用于读取图片

importnumpy as nplena= mpimg.imread('lena.png')

#读取和代码处于同一目录下的 lena.png

#此时 lena 就已经是一个 np.array 了,可以对它进行任意处理

lena.shape#(512, 512, 3)

plt.imshow(lena)#显示图片

plt.axis('off')#不显示坐标轴

plt.show()

2. 显示某个通道

#显示图片的第一个通道

lena_1 =lena[:,:,0]

plt.imshow('lena_1')

plt.show()#此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数,有如下几种添加方法:

plt.imshow('lena_1', cmap='Greys_r')

plt.show()

img = plt.imshow('lena_1')

img.set_cmap('gray') # 'hot' 是热量图

plt.show()

3. 将 RGB 转为灰度图

matplotlib 中没有合适的函数可以将 RGB 图转换为灰度图,可以根据公式自定义一个:

def  rgb2gray(rgb):

return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])

gray=rgb2gray(lena)#也可以用 plt.imshow(gray, cmap = plt.get_cmap('gray'))

plt.imshow(gray, cmap='Greys_r')

plt.axis('off')plt.show()

4. 对图像进行放缩

这里要用到 scipy

from scipy import misc

lena_new_sz= misc.imresize(lena, 0.5)#第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸

plt.imshow(lena_new_sz)

plt.axis('off')

plt.show()

5. 保存图像

5.1 保存 matplotlib 画出的图像

该方法适用于保存任何 matplotlib 画出的图像,相当于一个 screencapture。

plt.imshow(lena_new_sz)

plt.axis('off')

plt.savefig('lena_new_sz.png')

5.2 将 array 保存为图像

fromscipyimportmisc

misc.imsave('lena_new_sz.png', lena_new_sz)

5.3 直接保存 array

读取之后还是可以按照前面显示数组的方法对图像进行显示,这种方法完全不会对图像质量造成损失

np.save('lena_new_sz', lena_new_sz)#会在保存的名字后面自动加上.

npyimg= np.load('lena_new_sz.npy')#读取前面保存的数组

二、PIL

1. 显示图片

fromPILimportImage

im= Image.open('lena.png')

im.show()

2. 将 PIL Image 图片转换为 numpy 数组

im_array = np.array(im)

# 也可以用 np.asarray(im) 区别是 np.array() 是深拷贝,np.asarray() 是浅拷贝

3. 保存 PIL 图片

直接调用 Image 类的 save 方法

fromPILimportImage

I= Image.open('lena.png')

I.save('new_lena.png')

4. 将 numpy 数组转换为 PIL 图片

这里采用 matplotlib.image 读入图片数组,注意这里读入的数组是 float32 型的,范围是 0-1,而 PIL.Image 数据是 uint8 型的,范围是0-255,所以要进行转换:

import matplotlib.image as mpimg 

from PIL import Image

lena= mpimg.imread('lena.png')#这里读入的数据是 float32 型的,范围是0-1

im = Image.fromarray(np.uint8(lena*255))

im.show()

5. RGB 转换为灰度图

from PIL import Image

I= Image.open('lena.png')

I.show()

L= I.convert('L')

L.show()

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容