JS算法之深度优先遍历(DFS)和广度优先遍历(BFS

背景

在开发页面的时候,我们有时候会遇到这种需求:在页面某个dom节点中遍历,找到目标dom节点,我们正常做法是利用选择器document.getElementById(),document.getElementsByName()或者document.getElementsByTagName(),但在本文,我们从算法的角度去查找dom节点,同时理解一下深度优先遍历(DFS)和广度优先遍历(BFS)的原理。

准备

假设页面上的dom结构如下:

<div id="root">
    <ul>
        <li>
            <a href="">
                <img src="" alt="">
            </a>
        </li>
        <li>
            <span></span>
        </li>
        <li>
        </li>
    </ul>
    <p></p>
    <button></button>
</div>

让我们来把这个dom结构转化成树的样子

DOM结构

这样之后,dom结构似乎清楚了不少。

深度优先遍历(Depth-First Search)


该方法是以纵向的维度对dom树进行遍历,从一个dom节点开始,一直遍历其子节点,直到它的所有子节点都被遍历完毕之后在遍历它的兄弟节点。即如图所示(遍历顺序为红字锁标):

遍历顺序

js实现该算法代码(递归版本):

function deepFirstSearch(node,nodeList) {  
    if (node) {    
        nodeList.push(node);    
        var children = node.children;    
        for (var i = 0; i < children.length; i++) 
        //每次递归的时候将 需要遍历的节点 和 节点所存储的数组传下去
        deepFirstSearch(children[i],nodeList);    
    }    
    return nodeList;  
} 

非递归版本:

function deepFirstSearch(node) {
    var nodes = [];
    if (node != null) {
        var stack = [];
        stack.push(node);
        while (stack.length != 0) {
        var item = stack.pop();
        nodes.push(item);
        var children = item.children;
        for (var i = children.length - 1; i >= 0; i--)
            stack.push(children[i]);
        }
    }
    return nodes;
}

deepFirstSearch接受两个参数,第一个参数是需要遍历的节点,第二个是节点所存储的数组,并且返回遍历完之后的数组,该数组的元素顺序就是遍历顺序,调用方法:

let root = document.getElementById('root')
deepTraversal(root,nodeList=[])

控制台输出结果

结果

广度优先遍历(breadth-first traverse)

该方法是以横向的维度对dom树进行遍历,从该节点的第一个子节点开始,遍历其所有的兄弟节点,再遍历第一个节点的子节点,完成该遍历之后,暂时不深入,开始遍历其兄弟节点的子节点。即如图所示(遍历顺序为红字锁标):

结构

js实现算法代码(递归版本):

function breadthFirstSearch(node) {
    var nodes = [];
    var i = 0;
    if (!(node == null)) {
        nodes.push(node);
        breadthFirstSearch(node.nextElementSibling);
        node = nodes[i++];
        breadthFirstSearch(node.firstElementChild);
    }
    return nodes;
}

递归版本的BFS由于层级太深,会导致堆栈溢出:Maximum call stack size exceeded,但遍历的顺序依旧没有问题,可以在遍历过程中进行操作,不返回遍历数组即可。
非递归版本:

function breadthFirstSearch(node) {  
    var nodes = [];  
    if (node != null) {  
        var queue = [];  
        queue.unshift(node);  
        while (queue.length != 0) {  
            var item = queue.shift();  
            nodes.push(item);  
            var children = item.children;  
            for (var i = 0; i < children.length; i++)  
                queue.push(children[i]);  
        }  
    }  
    return nodes;  
}

控制台输出结果:

结果.jpg
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容