Hive SQL任务本质上最后是转化成了 MapReduce 任务执行。
MapReduce 实现 SQL 常见操作
Join的实现原理
select u.name, o.orderid from order o join user u on o.uid = u.uid;
在map的输出value中为不同表的数据打上tag标记,在reduce阶段根据tag判断数据来源。MapReduce的过程如下(这里只是说明最基本的Join的实现,还有其他的实现方式)
Group By的实现原理
select rank, isonline, count(*) from city group by rank, isonline;
将GroupBy的字段组合为map的输出key值,利用MapReduce的排序,在reduce阶段保存LastKey区分不同的key。MapReduce的过程如下(当然这里只是说明Reduce端的非Hash聚合过程)
Distinct的实现原理
select dealid, count(distinct uid) num from order group by dealid;
当只有一个distinct字段时,如果不考虑Map阶段的Hash GroupBy,只需要将GroupBy字段和Distinct字段组合为map输出key,利用mapreduce的排序,同时将GroupBy字段作为reduce的key,在reduce阶段保存LastKey即可完成去重
SQL转化为MapReduce的过程
了解了MapReduce实现SQL基本操作之后,我们来看看Hive是如何将SQL转化为MapReduce任务的,整个编译过程分为六个阶段:
- Antlr定义SQL的语法规则,完成SQL词法解析,语法解析,
将SQL转化为抽象语法树AST Tree
- 遍历AST Tree,抽象出查询的基本组成单元QueryBlock
- 遍历QueryBlock,翻译为执行操作树OperatorTree
- 逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量(优化如谓词下推等)
- 遍历OperatorTree,翻译为MapReduce任务
- 物理层优化器进行MapReduce任务的变换,生成最终的执行计划
PS: 查看hive sql编译后的执行计划
hive> explain select * from tablename;
Ref:
-Hive SQL的编译过程