自动微分机制

神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。

而深度学习框架可以帮助我们自动地完成这种求梯度运算。

Tensorflow一般使用梯度磁带tf.GradientTape来记录正向运算过程,然后反播磁带自动得到梯度值。

这种利用tf.GradientTape求微分的方法叫做Tensorflow的自动微分机制。

一,利用梯度磁带求导数

import tensorflow as tf
import numpy as np 

# f(x) = a*x**2 + b*x + c的导数

x = tf.Variable(0.0,name = "x",dtype = tf.float32)
a = tf.constant(1.0)
b = tf.constant(-2.0)
c = tf.constant(1.0)

with tf.GradientTape() as tape:
    y = a*tf.pow(x,2) + b*x + c
    
dy_dx = tape.gradient(y,x)
print(dy_dx)
tf.Tensor(-2.0, shape=(), dtype=float32)

# 对常量张量也可以求导,需要增加watch

with tf.GradientTape() as tape:
    tape.watch([a,b,c])
    y = a*tf.pow(x,2) + b*x + c
    
dy_dx,dy_da,dy_db,dy_dc = tape.gradient(y,[x,a,b,c])
print(dy_da)
print(dy_dc)

tf.Tensor(0.0, shape=(), dtype=float32)
tf.Tensor(1.0, shape=(), dtype=float32)

# 可以求二阶导数
with tf.GradientTape() as tape2:
    with tf.GradientTape() as tape1:   
        y = a*tf.pow(x,2) + b*x + c
    dy_dx = tape1.gradient(y,x)   
dy2_dx2 = tape2.gradient(dy_dx,x)

print(dy2_dx2)
tf.Tensor(2.0, shape=(), dtype=float32)

# 可以在autograph中使用

@tf.function
def f(x):   
    a = tf.constant(1.0)
    b = tf.constant(-2.0)
    c = tf.constant(1.0)
    
    # 自变量转换成tf.float32
    x = tf.cast(x,tf.float32)
    with tf.GradientTape() as tape:
        tape.watch(x)
        y = a*tf.pow(x,2)+b*x+c
    dy_dx = tape.gradient(y,x) 
    
    return((dy_dx,y))

tf.print(f(tf.constant(0.0)))
tf.print(f(tf.constant(1.0)))
(-2, 1)
(0, 0)

二,利用梯度磁带和优化器求最小值

# 求f(x) = a*x**2 + b*x + c的最小值
# 使用optimizer.apply_gradients

x = tf.Variable(0.0,name = "x",dtype = tf.float32)
a = tf.constant(1.0)
b = tf.constant(-2.0)
c = tf.constant(1.0)

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
for _ in range(1000):
    with tf.GradientTape() as tape:
        y = a*tf.pow(x,2) + b*x + c
    dy_dx = tape.gradient(y,x)
    optimizer.apply_gradients(grads_and_vars=[(dy_dx,x)])
    
tf.print("y =",y,"; x =",x)
y = 0 ; x = 0.999998569

# 求f(x) = a*x**2 + b*x + c的最小值
# 使用optimizer.minimize
# optimizer.minimize相当于先用tape求gradient,再apply_gradient

x = tf.Variable(0.0,name = "x",dtype = tf.float32)

#注意f()无参数
def f():   
    a = tf.constant(1.0)
    b = tf.constant(-2.0)
    c = tf.constant(1.0)
    y = a*tf.pow(x,2)+b*x+c
    return(y)

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)   
for _ in range(1000):
    optimizer.minimize(f,[x])   
    
tf.print("y =",f(),"; x =",x)
y = 0 ; x = 0.999998569

# 在autograph中完成最小值求解
# 使用optimizer.apply_gradients

x = tf.Variable(0.0,name = "x",dtype = tf.float32)
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

@tf.function
def minimizef():
    a = tf.constant(1.0)
    b = tf.constant(-2.0)
    c = tf.constant(1.0)
    
    for _ in tf.range(1000): #注意autograph时使用tf.range(1000)而不是range(1000)
        with tf.GradientTape() as tape:
            y = a*tf.pow(x,2) + b*x + c
        dy_dx = tape.gradient(y,x)
        optimizer.apply_gradients(grads_and_vars=[(dy_dx,x)])
        
    y = a*tf.pow(x,2) + b*x + c
    return y

tf.print(minimizef())
tf.print(x)
0
0.999998569

# 在autograph中完成最小值求解
# 使用optimizer.minimize

x = tf.Variable(0.0,name = "x",dtype = tf.float32)
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)   

@tf.function
def f():   
    a = tf.constant(1.0)
    b = tf.constant(-2.0)
    c = tf.constant(1.0)
    y = a*tf.pow(x,2)+b*x+c
    return(y)

@tf.function
def train(epoch):  
    for _ in tf.range(epoch):  
        optimizer.minimize(f,[x])
    return(f())


tf.print(train(1000))
tf.print(x)

0
0.999998569

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 机器学习术语表 本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。 A A/B 测试 (...
    yalesaleng阅读 6,017评论 0 11
  •   几乎所有机器学习算法在训练或预测时都可以归结为最优化问题的求解,如果目标函数可导,该问题转换为训练函数驻点求解...
    殉道者之花火阅读 6,732评论 0 3
  • A 准确率(accuracy) 分类模型预测准确的比例。在多类别分类中,准确率定义如下: 在二分类中,准确率定义为...
    630d0109dd74阅读 5,235评论 0 3
  • 本文编译自谷歌开发者机器学习术语表项目,介绍了该项目所有的术语与基本解释。 A 准确率(accuracy) 分类模...
    630d0109dd74阅读 6,151评论 0 1
  • 你。还好吗。。其实在我心里有好多好多想对你说的话,可是现在。。。。。只能凭着记忆,回忆停留在脑海里我们的美好。没想...
    FM阿庆阅读 3,025评论 0 0