MongoDB查询总结
介绍
前面写过一篇关于Mongo�db的例子——浅谈MongoDB数据库,当时使用的只是简单的查询,然后后面业务变的有点复杂,原先没有仔细研究过Mongodb的查询,以为就是简单调用下find
就可以了,乃衣服。
所以今天特地举例说明一下Mongo中查询问题。
Mongo查询可以�分为2种:
普通查询,类似于Sql中的
select where
聚合查询,类似于Sql中的
group by
普通查询
首先放一下官方文档,普通查询主要用到db.collection.find()
函数。
定义下示例数据库,下面是是初始化数据,可以在Mongo中的控制台�执行。
db.inventory.insertMany([
{ item: "journal", qty: 25, size: { h: 14, w: 21, uom: "cm" }, status: "A" },
{ item: "notebook", qty: 50, size: { h: 8.5, w: 11, uom: "in" }, status: "A" },
{ item: "paper", qty: 100, size: { h: 8.5, w: 11, uom: "in" }, status: "D" },
{ item: "planner", qty: 75, size: { h: 22.85, w: 30, uom: "cm" }, status: "D" },
{ item: "postcard", qty: 45, size: { h: 10, w: 15.25, uom: "cm" }, status: "A" }
]);
- 查询所有
db.inventory.find( {} )
映射Sql语句
SELECT * FROM inventory
- 条件查询
语法格式
{ <field1>: <value1>, ... }
比如查询status
为D
记录。
db.inventory.find( { status: "D" } )
映射Sql语句
SELECT * FROM inventory WHERE status = "D"
- 使用操作符进行条件查询
语法格式
{ <field1>: { <operator1>: <value1> }, ... }
比如查询满足status
是�数组[A,D]
中的记录
db.inventory.find( { status: { $in: [ "A", "D" ] } } )
映射Sql语句
SELECT * FROM inventory WHERE status in ("A", "D")
- AND 条件查询
直接在find函数指定多个字段满足即可,这样就是 and 条件。
比如下面语句就是 status
为 A
,qty
小于 30
。
db.inventory.find( { status: "A", qty: { $lt: 30 } } )
映射Sql语句
SELECT * FROM inventory WHERE status = "A" AND qty < 30
- OR 条件查询
�OR 和 AND 就不一样了,需要用到操作符 $or
,如下所示。
db.inventory.find( { $or: [ { status: "A" }, { qty: { $lt: 30 } } ] } )
类似于SQL中的
SELECT * FROM inventory WHERE status = "A" OR qty < 30
- OR 和 AND 集合一起
db.inventory.find( {
status: "A",
$or: [ { qty: { $lt: 30 } }, { item: /^p/ } ]
} )
表示这样的意思。
SELECT * FROM inventory WHERE status = "A" AND ( qty < 30 OR item LIKE "p%")
查询举例
- 查询全部
SELECT *
FROM people
db.people.find()
- 指定字段
SELECT id,
user_id,
status
FROM people
db.people.find(
{ },
{ user_id: 1, status: 1 }
)
SELECT user_id, status
FROM people
- 指定字段,不显示
_id
db.people.find(
{ },
{ user_id: 1, status: 1, _id: 0 }
)
- 条件查询全部
SELECT *
FROM people
WHERE status = "A"
db.people.find(
{ status: "A" }
)
- 条件查询�指定字段
SELECT user_id, status
FROM people
WHERE status = "A"
db.people.find(
{ status: "A" },
{ user_id: 1, status: 1, _id: 0 }
)
- 条件查询不等于
SELECT *
FROM people
WHERE status != "A"
db.people.find(
{ status: { $ne: "A" } }
)
- 条件查询 AND
SELECT *
FROM people
WHERE status = "A"
AND age = 50
db.people.find(
{ status: "A",
age: 50 }
)
- 条件查询 OR
SELECT *
FROM people
WHERE status = "A"
OR age = 50
db.people.find(
{ $or: [ { status: "A" } ,
{ age: 50 } ] }
)
- 条件查询 �>
SELECT *
FROM people
WHERE age > 25
db.people.find(
{ age: { $gt: 25 } }
)
- 条件查询 �<
SELECT *
FROM people
WHERE age < 25
db.people.find(
{ age: { $lt: 25 } }
)
- �复杂的条件查询
SELECT *
FROM people
WHERE age > 25
AND age <= 50
db.people.find(
{ age: { $gt: 25, $lte: 50 } }
)
- 条件查询 �LIKE
SELECT *
FROM people
WHERE user_id like "%bc%"
db.people.find( { user_id: /bc/ } )
// OR
db.people.find( { user_id: { $regex: /bc/ } } )
SELECT *
FROM people
WHERE user_id like "bc%"
db.people.find( { user_id: /^bc/ } )
// OR
db.people.find( { user_id: { $regex: /^bc/ } } )
- 排序
SELECT *
FROM people
WHERE status = "A"
ORDER BY user_id ASC
db.people.find( { status: "A" } ).sort( { user_id: 1 } )
SELECT *
FROM people
WHERE status = "A"
ORDER BY user_id DESC
db.people.find( { status: "A" } ).sort( { user_id: -1 } )
- 统计数量
SELECT COUNT(*)
FROM people
db.people.count()
// or
db.people.find().count()
SELECT COUNT(user_id)
FROM people
db.people.count( { user_id: { $exists: true } } )
or
db.people.find( { user_id: { $exists: true } } ).count()
SELECT COUNT(*)
FROM people
WHERE age > 30
db.people.count( { age: { $gt: 30 } } )
// or
db.people.find( { age: { $gt: 30 } } ).count()
- 去除重复distinct
SELECT DISTINCT(status)
FROM people
db.people.distinct( "status" )
SELECT *
FROM people
LIMIT 1
- 限制数量
db.people.findOne()
// or
db.people.find().limit(1)
SELECT *
FROM people
LIMIT 5
SKIP 10
db.people.find().limit(5).skip(10)
- EXPLAIN
EXPLAIN SELECT *
FROM people
WHERE status = "A"
db.people.find( { status: "A" } ).explain()
聚合查询
上面�普通查询使用find
函数即可,但是聚合查询使用另外一个函数aggregate
,这里是官方文档。
初始化数据如下,有2个表 orders
和 order_lineitem
�,外键关联order_lineitem.order_id and the orders.id
。
{
cust_id: "abc123",
ord_date: ISODate("2012-11-02T17:04:11.102Z"),
status: 'A',
price: 50,
items: [ { sku: "xxx", qty: 25, price: 1 },
{ sku: "yyy", qty: 25, price: 1 } ]
}
- 统计数量
db.orders.aggregate( [
{
$group: {
_id: null,
count: { $sum: 1 }
}
}
] )
映射Sql语句
SELECT COUNT(*) AS count
FROM orders
- 计算总和
db.orders.aggregate( [
{
$group: {
_id: null,
total: { $sum: "$price" }
}
}
] )
映射Sql语句
SELECT SUM(price) AS total
FROM orders
- 分组计算总和
db.orders.aggregate( [
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
}
] )
映射Sql语句
SELECT cust_id,
SUM(price) AS total
FROM orders
GROUP BY cust_id
- 分组计算总和并排序
db.orders.aggregate( [
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
},
{ $sort: { total: 1 } }
] )
映射Sql语句
SELECT cust_id,
SUM(price) AS total
FROM orders
GROUP BY cust_id
ORDER BY tota
- 多个字段分组
db.orders.aggregate( [
{
$group: {
_id: {
cust_id: "$cust_id",
ord_date: {
month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}
}
},
total: { $sum: "$price" }
}
}
] )
映射Sql语句
SELECT cust_id,
ord_date,
SUM(price) AS total
FROM orders
GROUP BY cust_id,
ord_date
- 条件分组——HAVING
db.orders.aggregate( [
{
$group: {
_id: "$cust_id",
count: { $sum: 1 }
}
},
{ $match: { count: { $gt: 1 } } }
] )
映射Sql语句
SELECT cust_id,
count(*)
FROM orders
GROUP BY cust_id
HAVING count(*) > 1
- 复杂条件分组统计
db.orders.aggregate( [
{
$group: {
_id: {
cust_id: "$cust_id",
ord_date: {
month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}
}
},
total: { $sum: "$price" }
}
},
{ $match: { total: { $gt: 250 } } }
] )
映射Sql语句
SELECT cust_id,
ord_date,
SUM(price) AS total
FROM orders
GROUP BY cust_id,
ord_date
HAVING total > 250
- 复杂条件分组统计示例1
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
}
] )
映射Sql语句
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
- 复杂条件分组统计示例2
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
},
{ $match: { total: { $gt: 250 } } }
] )
映射Sql语句
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
- 表关联
db.orders.aggregate( [
{ $unwind: "$items" },
{
$group: {
_id: "$cust_id",
qty: { $sum: "$items.qty" }
}
}
] )
映射Sql语句
SELECT cust_id,
SUM(li.qty) as qty
FROM orders o,
order_lineitem li
WHERE li.order_id = o.id
GROUP BY cust_id
- 嵌套查询
db.orders.aggregate( [
{
$group: {
_id: {
cust_id: "$cust_id",
ord_date: {
month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}
}
}
}
},
{
$group: {
_id: null,
count: { $sum: 1 }
}
}
] )
映射Sql语句
SELECT COUNT(*)
FROM (SELECT cust_id,
ord_date
FROM orders
GROUP BY cust_id,
ord_date)
as DerivedTable
Map-Reduce
Mongo中聚合查询还有一种叫Map-Reduce,官方文档在这里,在思想上它跟Hadoop一样,从一个单一集合中输入数据,然后将结果输出到一个集合中。通常在使用类似SQL中Group By
操作时,Map/Reduce会是一个好的工具。
接口方法定义
db.collection.mapReduce(
<map>,
<reduce>,
{
out: <collection>,
query: <document>,
sort: <document>,
limit: <number>,
finalize: <function>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>
}
)
参数说明
mapReduce: 要执行Map/Reduce集合的名字
map: map 函数 (下面会详细介绍)
reduce: reduce函数(下面会详细介绍)
out: 存放结果的集合 (下面会详细介绍)
query: 设置查询条件 <可选>
sort: 按某个键来排序 <可选>
limit: 指明从集合检索文档个数的最大值 <可选>
finalize: 对reduce结果做进一步处理 <可选>
scope: 指明通过map/reduce/finalize可以访问到的变量 <可选>
jsMode: 指明Map/Reduce执行过程中文档保持JSON状态 <可选>
verbose: 提供关于任务执行的统计数据 <可选>
示例说明
�举例说明Map-Reduce的用途,�虽然代码比较多,也行用上面的聚合查询,一下子就搞定了,但是这里只是举例。
比如有个订单表,如下所示,我们需要计算每个人的订单总价。
{
_id: ObjectId("50a8240b927d5d8b5891743c"),
cust_id: "abc123",
ord_date: new Date("Oct 04, 2012"),
status: 'A',
price: 25,
items: [ { sku: "mmm", qty: 5, price: 2.5 },
{ sku: "nnn", qty: 5, price: 2.5 } ]
}
首先定义Map方法,就说我们后面的聚合计算需要哪些字段,�由于需要计算每个人的订单总结,那么个人信息和加个肯定是我们需要的。
var mapFunction1 = function() {
emit(this.cust_id, this.price);
};
然后定义reduce方法,计算每个人的订单价格。
var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);
};
然后存储最后的计算结果。
db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }
)
这样一个简单的Map-Reduce实例就完成了,结果放在map_reduce_example
中。
上面示例比较简单,那么我们来一个复杂一点的例子。
一条订单记录中,有sdk的名称、数量、价格,那么要查询出日期大于01/01/2012
,所有订单的总数,以及�平均sdk价格。
首先还是定义个map函数。
var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {
var key = this.items[idx].sku;
var value = {
count: 1,
qty: this.items[idx].qty
};
emit(key, value);
}
};
然后算出sku的数量,和总价格。
var reduceFunction2 = function(keySKU, countObjVals) {
reducedVal = { count: 0, qty: 0 };
for (var idx = 0; idx < countObjVals.length; idx++) {
reducedVal.count += countObjVals[idx].count;
reducedVal.qty += countObjVals[idx].qty;
}
return reducedVal;
};
总价格出来后,还要计算出平均价格。
var finalizeFunction2 = function (key, reducedVal) {
reducedVal.avg = reducedVal.qty / reducedVal.count;
return reducedVal;
};
还有日期的条件过滤,最后得出完整的map-reduce。
db.orders.mapReduce(
mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example" },
query: {
ord_date:{ $gt: new Date('01/01/2012') }
},
finalize: finalizeFunction2
}
)
总结
以上就是我对MongoDB的示例总结,本人是一个初学者,也有很多地方不懂,如果有错误的地方,欢迎指出。