深度学习|Keras识别CIFAR-10图像(CNN)

数据和方法

CIFAR-10数据集有6000个32×32个彩色图片,50000个训练图片和10000个测试图片。有10个类别:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车。

数据下载和处理

数据下载

Keras已经提供了模块用于下载数据,通过一下代码即可完成下载。

from keras.datasets import cifar10
import numpy as np
np.random.seed(10)

(x_img_train,y_label_train),(x_img_test,y_label_test)=cifar10.load_data()
数据处理
  • 标准化
  • label的one-hot编码
x_img_train_normalize = x_img_train.astype('float32') / 255.0
x_img_test_normalize = x_img_test.astype('float32') / 255.0

from keras.utils import np_utils
y_label_train_OneHot = np_utils.to_categorical(y_label_train)
y_label_test_OneHot = np_utils.to_categorical(y_label_test)

CNN建模

模型结构
建立模型
from keras.models import Sequential
from keras.layers import Conv2D,MaxPooling2D,Dense,Dropout,Flatten

model = Sequential()
model.add(Conv2D(filters=32,kernel_size=(3,3),
                 input_shape=(32, 32,3), 
                 activation='relu', 
                 padding='same'))
model.add(Dropout(0.25))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=64, kernel_size=(3, 3), 
                 activation='relu', padding='same'))
model.add(Dropout(0.25))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(rate=0.25))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(rate=0.25))
model.add(Dense(10, activation='softmax'))
训练模型
model.compile(loss='categorical_crossentropy',
              optimizer='adam', metrics=['accuracy'])
train_history = model.fit(x_img_train_normalize, y_label_train_OneHot,
                        validation_split=0.2,
                        epochs=10, batch_size=128, verbose=1) 
模型预测

精度不是特别高,可以多做几层卷积和池化。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容

  • 你是否有怀念一个人到骨子里,然后悄然泪下? 你是否有回忆过一段往事,让你温暖如初? 你又是否喜欢看怀旧的电影,带你...
    安娜美家形象设计阅读 229评论 0 0
  • 浑浑噩噩,不知所终,什么都不感兴趣,什么都没有意义。种种枷锁,种种不得已,你原以为可以勘破,不过是陷入另一层混沌,...
    咸鱼修仙志阅读 237评论 0 0
  • 又一个加班的夜晚 看看对面床喝的烂醉哭着要和前任复合的舍友 再想想自己手边的工作 谈恋爱得他妈耽误多少事儿啊!
    薇琪i阅读 114评论 0 0