神经网络之手写数字识别 《深度学习入门 基于Python的理论实现》第三章实践部分


layout: post
title: 深度学习入门 基于Python的理论实现
subtitle: 第三章 手写数字识别
tags: [Machine learning, Reading]


第三章 神经网络

3.6 手写数字识别

上一个post介绍了神经网络的基本内容,这一节搭配项目解决实际问题。这个例子非常简单,是一个机器学习里的Hello world。手写数字识别问题。但是这个例子是不完全的,我们<font color=red>假设学习已经全部完成</font>,我们用学习到的参数,先实现神经网络的“推理处理”。这也叫神经网络的前向传播。

3.6.1 MNIST数据集

这个数据集网上的资料实在太多了,就连他的进阶版本Fashion MNIST也出来很久了,相信能看到现在的人没有太多人不知道这个数据集。

介绍简单带过。MNIST数据集(Mixed National Institute of Standards and Technology database)是美国国家标准与技术研究院收集整理的大型手写数字数据库,包含60,000个示例的训练集以及10,000个示例的测试集。

MNIST的图像是28\times28像素的灰度图像(1通道),像素的取值在0到255之间。每个图像都标有对应的阿拉伯数字标签。

这本书提供了数据集和相应的代码。传送门

import sys,os

sys.path.append(os.pardir)
from dataset.mnist import load_mnist

(x_train, t_train),(x_test, t_test) = load_mnist(flatten=True, normalize=False)

print(x_train.shape)
print(t_train.shape)
print(x_test.shape)
print(t_test.shape)

第一次执行代码可能比较慢,原因是需要下载,服务器在国外,下载的比较慢。也可以手动下载放在文件夹,我就是用的这个方法(自动下载实在太慢了)。

于是我们打印出训练集,测试集和对应的label的shape。

MNIST_code.png

这里对代码做一点简单说明,这里的load_mnist函数是将数据集做导入,分别为两个训练集两个测试集,flatten参数为True代表将28\times28的图像扁平化,变成1\times784的向量。normalize的含义是将数值标准化为0到1之间的数字,这个函数还可以传入一个参数,就是one_hot_label,这个参数设置为True将会让标签变为one hot representation。

因为这里并不涉及参数的训练,因此我们需要导入参数,这离有一个pkl文件,保存着训练好的参数,直接导入就可以。下来简单显示一下图片。

import sys,os,cv2
import numpy as np

sys.path.append(os.pardir)
from dataset.mnist import load_mnist

(x_train, t_train),(x_test, t_test) = load_mnist(flatten=True, normalize=True)

print(x_train.shape)
print(t_train.shape)
print(x_test.shape)
print(t_test.shape)

first_image = x_train[0]
first_label = t_train[0]


print(first_label)

img = first_image.reshape(28,28)

cv2.imshow('img',img)
cv2.waitKey(0)  
cv2.destroyAllWindows()
MNIST_image.png

3.6.2 神经网络的推理处理

根据之前的内容,我们设计的神经网络的输入层的神经元个数,应该是784,也就是图像拉长之后的向量长度。输出层为10个神经元,因为输出层神经元的数量应该和分类的种类相等。另外,这神经网络有两个隐藏层,第一个隐藏层50个神经元,第二个有100个神经元。结合之前学过的知识,得到代码如下。

import sys,os,cv2,pickle
import numpy as np

sys.path.append(os.pardir)
from dataset.mnist import load_mnist

def sigmoid(x):
    return 1/(1+np.exp(-x))

def softmax(x):
    exp_x = np.exp(x-np.max(x))
    sum_exp_x = np.sum(exp_x)
    
    return exp_x/sum_exp_x
    

def get_data():
    
    (x_train, t_train),(x_test, t_test) = load_mnist(flatten=True, normalize=True)
    return x_test,t_test #没有训练阶段,因此只取测试数据

def init_network():
    with open("sample_weight.pkl",'rb') as f:
        network = pickle.load(f)
        
    return network

def predict(network,x):
    W1,W2,W3 = network['W1'],network['W2'],network['W3']
    b1,b2,b3 = network['b1'],network['b2'],network['b3']
    
    a1 = np.dot(x,W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1,W2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2,W3) + b3
    y = softmax(a3)
    
    return y


x,t = get_data()

accuracy_cnt = 0

for i in range(len(x)):
    y = predict(network,x[i])
    p = y.argmax()
    if p == t[i]:
    
        accuracy_cnt += 1
        
accuracy = accuracy_cnt/t.shape[0]

print(accuracy)

最后得到的正确率为93.52%。

3.6.3 批处理

上面就是神经网络的实现,但是在实际写代码的过程中,有一个问题,那就是在计算正确率的时候,我们是一遍一遍调用predict函数,得到结果和label进行比较,使用了for循环,这显然是不好的,我们引入矩阵运算就是为了应对这样的情况。但是还应该注意到的是,我们也不能一次将所有的数据输入进去,因为这会引起内存的溢出等等一系列问题,因此我们使用批处理可以让计算更加高效。之前计算时,矩阵大小的传递过程如下:

[1\times784]\times[784\times50]\times[50\times100]\times[100\times10]

下面我们一次性传入100张图片,也就是输入矩阵的大小改变,变成如下的形式。
[100\times784]\times[784\times50]\times[50\times100]\times[100\times10]

通过比较可以明显的看出,一次可以计算100张图片,输出100个结果。具体的细节就不多讲了,直接上实现。

import sys,os,cv2,pickle
import numpy as np

sys.path.append(os.pardir)
from dataset.mnist import load_mnist

def sigmoid(x):
    return 1/(1+np.exp(-x))

def softmax(x):
    exp_x = np.exp(x-np.max(x))
    sum_exp_x = np.sum(exp_x)
    
    return exp_x/sum_exp_x
    

def get_data():
    
    (x_train, t_train),(x_test, t_test) = load_mnist(flatten=True, normalize=True)
    return x_test,t_test #没有训练阶段,因此只取测试数据

def init_network():
    with open("sample_weight.pkl",'rb') as f:
        network = pickle.load(f)
        
    return network

def predict(network,x):
    W1,W2,W3 = network['W1'],network['W2'],network['W3']
    b1,b2,b3 = network['b1'],network['b2'],network['b3']
    
    a1 = np.dot(x,W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1,W2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2,W3) + b3
    y = softmax(a3)
    
    return y


x,t = get_data()

batch_size = 100
accuracy_cnt = 0

for i in range(0,len(x),batch_size):
    x_batch = x[i:i+batch_size]
    y_batch = predict(network,x_batch)
    p = np.argmax(y_batch,axis=1)
    accuracy_cnt += np.sum(p == t[i:i+batch_size])

accuracy = accuracy_cnt/t.shape[0]

print(accuracy)

最终得到的结果是完全一样的。

3.7 小结

第三章讲的是神经网络的前向传播。也就是数据是如何传递的,当然这一章的内容也是不完整的,因为没有训练部分,而是直接载入参数。

  • 实现部分主要的重点在于对批处理的理解。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容