1.算法仿真效果
本文是之前写的文章:
《基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR》
的硬件测试版本。
在系统在仿真版本基础上增加了ila在线数据采集模块,vio在线SNR设置模块,数据源模块。硬件ila测试结果如下:(完整代码运行后无水印):
vio设置SNR=15db
vio设置SNR=25db
硬件测试操作步骤可参考程序配套的操作视频。
2.算法涉及理论知识概要
16QAM全称正交幅度调制是英文Quadrature Amplitude Modulation的缩略语简称,意思是正交幅度调制,是一种数字调制方式。产生的方法有正交调幅法和复合相移法。16QAM是指包含16种符号的QAM调制方式。
16QAM 调制原理
16QAM 是用两路独立的正交 4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。它是 2ASK 调制的推广,和 2ASK 相比,这种调制的优点在于信息传输速率高。正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。
16 进制的正交振幅调制是一种振幅相位联合键控信号。16QAM 的产生有 2 种方法:
(1)正交调幅法,它是有 2 路正交的四电平振幅键控信号叠加而成;
(2)复合相移法:它是用 2 路独立的四相位移相键控信号叠加而成。
这里采用正交调幅法。
数字信号是通过FPGA的输出端口生成的。在16QAM调制中,每个符号包含4个比特,因此需要一个4位二进制计数器来生成数字信号。计数器的输出被映射到星座图上的一个点,然后通过数字到模拟转换器(DAC)转换为模拟信号。串/并变换器将速率为Rb的二进制码元序列分为两路,速率为Rb/2.2-4电平变换为Rb/2 的二进制码元序列变成速率为RS=Rb/log216 的 4 个电平信号,4 电平信号与正交载波相乘,完成正交调制,两路信号叠加后产生 16QAM信号.在两路速率为Rb/2 的二进制码元序列中,经 2-4 电平变换器输出为 4 电平信号,即M=16.经 4 电平正交幅度调制和叠加后,输出 16 个信号状态,即 16QAM.
16QAM 解调原理
16QAM 信号采取正交相干解调的方法解调,解调器首先对收到的 16QAM 信号进行正交相干解调,一路与 cos ω c t 相乘,一路与 sin ω c t 相乘。然后经过低通滤波器,低通滤波器 LPF 滤除乘法器产生的高频分量,获得有用信号,低通滤波器LPF 输出经抽样判决可恢复出电平信号。
3.Verilog核心程序
`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/11/25 03:23:02
// Design Name:
// Module Name: tops_hdw
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module tops_hdw(
input i_clk,
input i_rst,
output reg [3:0] led
);
//设置SNR
wire signed[7:0]o_SNR;
vio_0 your_instance_name (
.clk(i_clk), // input wire clk
.probe_out0(o_SNR) // output wire [7 : 0] probe_out0
);
wire [3:0] parallel_data;
wire signed[15:0]sin;
wire signed[15:0]cos;
wire signed[15:0] I_com;
wire signed[15:0] Q_com;
wire signed[15:0]I_Ncom;
wire signed[15:0]Q_Ncom;
wire signed[23:0]I_comcos2;
wire signed[23:0]Q_comsin2;
wire signed[7:0]o_Ifir;
wire signed[7:0]o_Qfir;
wire [3:0] o_sdout;
wire signed[31:0]o_error_num;
wire signed[31:0]o_total_num;
TOPS_16QAM TOPS_16QAM_u(
.clk (i_clk),
.rst (i_rst),
.start (1'b1),
.i_SNR (o_SNR),
.parallel_data (parallel_data),
.sin (sin),
.cos (cos),
.I_com (I_com),
.Q_com (Q_com),
.I_Ncom (I_Ncom),
.Q_Ncom (Q_Ncom),
.I_comcos2 (I_comcos2),
.Q_comsin2 (Q_comsin2),
.o_Ifir (o_Ifir),
.o_Qfir (o_Qfir),
.o_sdout (o_sdout),
.o_error_num (o_error_num),
.o_total_num (o_total_num)
);
//ila篇内测试分析模块
ila_0 ila_u (
.clk(i_clk), // input wire clk
.probe0({
o_SNR,//8
I_com[15:6], Q_com[15:6],I_Ncom[15:6],Q_Ncom[15:6],//40
I_comcos2[23:8],Q_comsin2[23:8],o_Ifir,o_Qfir,//48
parallel_data,o_sdout,
o_error_num,o_total_num//64
})
);
endmodule
4.开发板使用说明和如何移植不同的开发板
注意:硬件片内测试是指发射接收均在一个板子内完成,因此不需要定时同步模块。
在本课题中,使用的开发板是:
如果你的开发板和我的不一样,可以参考代码包中的程序移植方法进行移植: