凯利公式

最早的凯利公式是运用在赌博游戏中的,我们先看看赌博情形下凯利公式的特殊形式:

![][equtation]
[equtation]: http://latex.codecogs.com/svg.latex?f=\frac{p_{win}*b-p_{loss}}{b}

其中Pwin表示胜率,Ploss=1-Pwin,b表示赌赢了的赔率(扣除本金后的收益/本金)。f表示单次下注占总资金的比例。
就是这个精巧简洁的公式,将信息论与赌博之间的本质联系揭露出来,告诉我们在有限了解的信息下,如何下注能使得资本增值的速度最大化。

一个简单的例子

假想一个赌博游戏。赢的概率是60%,输的概率40%。入场费随意交。如果赢了获得2倍的入场费金额(b=1),输则输掉入场费。小编有100元做本金,请问小编每次给多少入场费,若干次游戏后几何期望收益能最大?
答:f = (1×0.6-0.4)/1 = 0.2。
也就是说最佳的策略是每次投剩余本金的20%。
这块不难理解,带入公式就能算出来。

注意两点:

1.从概率的角度说,一个期望净收益为负的游戏是不值得参与的,凯利公式也完美的体现了这一点。还是上面的游戏,如果赢的概率40%,输的概率60%,那么,期望净收益就是(1×0.4-0.6)<0;求得的f为-0.2。
负数仓位意味着你有上中两策可以选。中策选择不下注,上策是诱骗别人来跟你下注。

2.赌博版凯利公式只有在稳赢(赢概率=100%)时才会支持押下全部本金,否则都是本金的一定比例。随着本金的减少,下的注也越来越少。如果没有交易费用,下注可无限分割,我们是亏不完的(留得青山在,不怕没柴烧)。
下图能更直观的看到凯利公式对仓位的控制:如果押注的比例限制在0和1之间,对应不同的胜率(Pwin)和赔率(b)时,f会在三维空间上形成一个曲面。这个曲面与f=0对应的平面相交的那条黑线就是期望为0所形成的曲线。

接下来我们在股票操作中构建一个类似上述的赌博模型,然后引入凯利公式。

把股票模型转换为赌博模型

下图来自《财富公式:玩转拉斯维加斯和华尔街的故事》,看看凯利的结果还不错嘛。


股票的假设和赌博有点不一样。股票是一个连续的过程,未来某一个时刻的收益率不是固定的一个值,而是一个分布。

那么我们怎么做?
怎么做可以发挥各种想象力,我们提供一个思路。
首先,在西方那一套理论中,往往用随机游走来描述股价的波动:


怎么把模型转换成与赌博模型类似的呢?方法有很多,这里来一个简单粗暴的。设置一个止盈价格和止损线,碰到了就出局。如果取对数后的股价服从随机游走假设,并且初始点是上沿和下沿的正中间,按照理论,先碰到上沿和先碰到下沿的概率是一样的。(忽略漂移项)。


但是在实际情况中呢,股价不是所有的时候都服从这个随机游走模型。股价先碰到上沿的概率会高于先碰到下沿的概率。比如说,突然出一个利好,财报公布后超预期,降准降息啦,或者单纯的资金面涌入造成短时间多空失衡,等等。
我们管这些事件,或者与这些事件同时发生的一些现象称为信号。比如说,降息的事件本身,就是一个信号。利好之前可能会有人提前知道偷偷买,造成股价跌不下去,这个该跌不跌就是一个信号。资金的涌入造成成交量放大,这个成交量放大也是一个信号。


上图表示事件对股价形成了影响,整体概率分布向上偏移,先碰到止盈的概率大于先碰到止损的概率。

交易所做的事情,就是这么一个寻找信号的过程,找到有效信号,意味着信号背后的事件会使股价的概率分布偏离,赢的期望变大。同时我们设置止盈止损线,这样赔率也就固定了下来。
由此我们就把投资股票的过程转换成一个连续赌博的过程。信号发出就是我们入场点。止盈止损发生的时候,就是我们的出场点。赔率和损失率就是止盈止损与入场价格之差。一次入场和出场就相当于赌博模型中的单次赌博,单次赌博的仓位由凯利公式确定。

前文的赌博公式中,赔一次会输掉押注的所有金额。而由于在股市中,我们不会一次性赔光本金,而是赔掉本金的一定比例。所以我们需要使用一般性的凯利公式:

![][equtation2]
[equtation2]: http://latex.codecogs.com/svg.latex?f=\frac{p_{win}}{b}-\frac{p_{loss}}{c}

f:仓位比例
Pwin:赌赢的概率—股市上涨概率
Ploss:赌输的概率—股市下跌概率
b:赢钱率(资产从1增加到1+b)
c:损失率(资产从1减少到1-c)

假设我们找到了一个有效信号。并且根据历史上的统计,过去三年这个有效信号发生了1000次。以信号发出的价格为起点,在20%的正收益时止盈,在20%的负收益时止损。

那么在信号发出后,如果先触碰盈的次数570次,先触碰止损的次数430次(这里只是为了举例而做简化,实际中我们需要做更多的工作)。于是,我们就成功的把问题转换成了一个连续赌博的问题:有这么一种赌博,赢一次的赔率为20%,输一次的损失率为20%,赢率为57%

对应公式,有Pwin=0.57,Ploss=0.43,b=0.20,c=0.20
此时f=Pwin/c – Ploss/b = 0.57/0.20 – 0.43/0.20= 70%
也就是说,不管你现在剩余多少钱,应该买入剩余部分的70%的仓位。

接下来,我们用蒙特卡洛模拟的方法做一组测试,看看凯利公式是怎么发挥作用的。假设股票投机产生了T次信号。我们相应的按照上述参数随机生成胜率和赔率,做了T次投机。把这T次投机算成一组完整的投资过程,这样就会得到一个净值的序列。对于任意的T,我们将这个投资过程重复1000次,求净值的几何平数。
我们看看在不同的投机次数T下的效果:

T=100:


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容

  • 恋爱容易,婚姻不易,且行且珍惜! 当你爱上一个人,并且决定共度终生时候,突然发现这个人的某一个价值观是你否定的,怎...
    loloooo阅读 2,010评论 0 2
  • 本文来自ricequant社区用户 su frank ,加入ricequant社区使你的量化生涯更精彩。 爱好...
    Ricequant阅读 2,518评论 0 10
  • 在冒险这篇文章中,提出了两点: 假如在一场赌博游戏中1,抗风险能力越强,也就是资本总量越大,那么可以参与游戏的次数...
    周书恒阅读 3,731评论 0 5
  • 初六那天,刚刚到家的老弟建议老爸还有我一起上山,到老屋场去祭祖。于是,我们仨踩着积雪,顺着大路,兴致勃勃的到了山脚...
    修墨68阅读 140评论 0 1
  • 这两天朋友圈被咪蒙的文章《说来惭愧,我的助理月薪才5万》刷屏了。 文章第一句话就是“很多人之所以能成功,就是选择了...
    两碗米饭阅读 491评论 4 3