小白简单了解机器学习

机器学习概述

什么是机器学习

机器学习是人工智能的一个分支。人工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习算法是一类从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测的算法

ml.png

为什么需要机器学习

21世纪机器学习又一次被人们关注,而这些关注的背后是因为整个环境的改变,我们的数据量越来越多,硬件越来越强悍。急需要解放人的生产力,自动去寻找数据的规律。解决更多专业领域的问题。机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域.

开发机器学习应用程序的步骤

(1)收集数据

我们可以使用很多方法收集样本护具,如:制作网络爬虫从网站上抽取数据、从RSS反馈或者API中得到信息、设备发送过来的实测数据。

(2)准备输入数据

得到数据之后,还必须确保数据格式符合要求。

(3)分析输入数据

这一步的主要作用是确保数据集中没有垃圾数据。如果是使用信任的数据来源,那么可以直接跳过这个步骤

(4)训练算法

机器学习算法从这一步才真正开始学习。如果使用无监督学习算法,由于不存在目标变量值,故而也不需要训练算法,所有与算法相关的内容在第(5)步

(5)测试算法

这一步将实际使用第(4)步机器学习得到的知识信息。当然在这也需要评估结果的准确率,然后根据需要重新训练你的算法

(6)使用算法

转化为应用程序,执行实际任务。以检验上述步骤是否可以在实际环境中正常工作。如果碰到新的数据问题,同样需要重复执行上述的步骤

机器学习工程师做什么

互联网公司机器学习工作、数据挖掘工程师们工作内容是什么?

  • 研究各种算法,设计高大上模型?
  • 深度学习的应用,N层神经网络?
  • ...

大部分复杂模型的算法精进都是数据科学家在做

大多数程序员

  • 跑数据,各种map-reduce,hive SQL,数据仓库搬砖
  • 数据清洗,数据清洗,数据清洗
  • 分析业务,分析case,找特征
  • 常用算法跑模型

我们应该怎么做

  1. 学会分析问题
  2. 掌握算法基本思想,学会对问题用相应的算法解决
  3. 学会利用简便的库或者框架解决问题
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容