一文搞懂 , Linux内核—— 同步管理(下)

上面讲的自旋锁,信号量和互斥锁的实现,都是使用了原子操作指令。由于原子操作会 lock,当线程在多个 CPU 上争抢进入临界区的时候,都会操作那个在多个 CPU 之间共享的数据 lock。CPU 0 操作了 lock,为了数据的一致性,CPU 0 的操作会导致其他 CPU 的 L1 中的 lock 变成 invalid,在随后的来自其他 CPU 对 lock 的访问会导致 L1 cache miss(更准确的说是communication cache miss),必须从下一个 level 的 cache 中获取。

这就会使缓存一致性变得很糟,导致性能下降。所以内核提供一种新的同步方式:RCU(读-复制-更新)。

RCU 解决了什么

RCU 是读写锁的高性能版本,它的核心理念是读者访问的同时,写者可以更新访问对象的副本,但写者需要等待所有读者完成访问之后,才能删除老对象。读者没有任何同步开销,而写者的同步开销则取决于使用的写者间同步机制。

RCU 适用于需要频繁的读取数据,而相应修改数据并不多的情景,例如在文件系统中,经常需要查找定位目录,而对目录的修改相对来说并不多,这就是 RCU 发挥作用的最佳场景。

RCU 例子

RCU 常用的接口如下图所示:


为了更好的理解,在剖析 RCU 之前先看一个例子:

#include<linux/kernel.h>#include<linux/module.h>#include<linux/init.h>#include<linux/slab.h>#include<linux/spinlock.h>#include<linux/rcupdate.h>#include<linux/kthread.h>#include<linux/delay.h>structfoo{inta;structrcu_headrcu;};staticstructfoo*g_ptr;staticintmyrcu_reader_thread1(void*data)//读者线程1{structfoo*p1=NULL;while(1){if(kthread_should_stop())break;msleep(20);rcu_read_lock();mdelay(200);p1=rcu_dereference(g_ptr);if(p1)printk("%s: read a=%d\n",__func__,p1->a);rcu_read_unlock();}return0;}staticintmyrcu_reader_thread2(void*data)//读者线程2{structfoo*p2=NULL;while(1){if(kthread_should_stop())break;msleep(30);rcu_read_lock();mdelay(100);p2=rcu_dereference(g_ptr);if(p2)printk("%s: read a=%d\n",__func__,p2->a);rcu_read_unlock();}return0;}staticvoidmyrcu_del(structrcu_head*rh)//回收处理操作{structfoo*p=container_of(rh,structfoo,rcu);printk("%s: a=%d\n",__func__,p->a);kfree(p);}staticintmyrcu_writer_thread(void*p)//写者线程{structfoo*old;structfoo*new_ptr;intvalue=(unsignedlong)p;while(1){if(kthread_should_stop())break;msleep(250);new_ptr=kmalloc(sizeof(structfoo),GFP_KERNEL);old=g_ptr;*new_ptr=*old;new_ptr->a=value;rcu_assign_pointer(g_ptr,new_ptr);call_rcu(&old->rcu,myrcu_del);printk("%s: write to new %d\n",__func__,value);value++;}return0;}staticstructtask_struct*reader_thread1;staticstructtask_struct*reader_thread2;staticstructtask_struct*writer_thread;staticint__initmy_test_init(void){intvalue=5;printk("figo: my module init\n");g_ptr=kzalloc(sizeof(structfoo),GFP_KERNEL);reader_thread1=kthread_run(myrcu_reader_thread1,NULL,"rcu_reader1");reader_thread2=kthread_run(myrcu_reader_thread2,NULL,"rcu_reader2");writer_thread=kthread_run(myrcu_writer_thread,(void*)(unsignedlong)value,"rcu_writer");return0;}staticvoid__exitmy_test_exit(void){printk("goodbye\n");kthread_stop(reader_thread1);kthread_stop(reader_thread2);kthread_stop(writer_thread);if(g_ptr)kfree(g_ptr);}MODULE_LICENSE("GPL");module_init(my_test_init);module_exit(my_test_exit);

执行结果是:

myrcu_reader_thread2:reada=0myrcu_reader_thread1:reada=0myrcu_reader_thread2:reada=0myrcu_writer_thread:writetonew5myrcu_reader_thread2:reada=5myrcu_reader_thread1:reada=5myrcu_del:a=0

RCU 原理

可以用下面一张图来总结,当写线程 myrcu_writer_thread 写完后,会更新到另外两个读线程 myrcu_reader_thread1 和 myrcu_reader_thread2。读线程像是订阅者,一旦写线程对临界区有更新,写线程就像发布者一样通知到订阅者那里,如下图所示。


写者在拷贝副本修改后进行 update 时,首先把旧的临界资源数据移除(Removal);然后把旧的数据进行回收(Reclamation)。结合 API 实现就是,首先使用 rcu_assign_pointer 来移除旧的指针指向,指向更新后的临界资源;然后使用 synchronize_rcu 或 call_rcu 来启动 Reclaimer,对旧的临界资源进行回收(其中 synchronize_rcu 表示同步等待回收,call_rcu 表示异步回收)。

为了确保没有读者正在访问要回收的临界资源,Reclaimer 需要等待所有的读者退出临界区,这个等待的时间叫做宽限期(Grace Period)。

Grace Period

中间的黄色部分代表的就是 Grace Period,中文叫做宽限期,从 Removal 到 Reclamation,中间就隔了一个宽限期,只有当宽限期结束后,才会触发回收的工作。宽限期的结束代表着 Reader 都已经退出了临界区,因此回收工作也就是安全的操作了。

宽限期是否结束,与 CPU 的执行状态检测有关,也就是检测静止状态 Quiescent Status。

Quiescent Status

Quiescent Status,用于描述 CPU 的执行状态。当某个 CPU 正在访问 RCU 保护的临界区时,认为是活动的状态,而当它离开了临界区后,则认为它是静止的状态。当所有的 CPU 都至少经历过一次 Quiescent Status 后,宽限期将结束并触发回收工作。

因为 rcu_read_lock 和 rcu_read_unlock 分别是关闭抢占和打开抢占,如下所示:

staticinlinevoid__rcu_read_lock(void){preempt_disable();}

staticinlinevoid__rcu_read_unlock(void){preempt_enable();}

所以发生抢占,就说明不在 rcu_read_lock 和 rcu_read_unlock 之间,即已经完成访问或者还未开始访问。

Linux 同步方式的总结


【文章福利】小生推荐自己的Linux后台/内核技术交流群【 318652197】整理了一些个人觉得比较好的学习书籍,视频资料共享在群文件里面,有需要的自行添加哦!!!前100名进群领取,额外赠送一份价值699的内核资料包(含视频、电子书、实战项目及代码)

资料免费领

学习直通车

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容