torch自带数据集
导入数据集主要依赖如下两个包:
torch.utils.data.Dataset: 样例训练集
torch.utils.data.DataLoader: 方便使用
其他训练dataset:
image: https://pytorch.org/vision/stable/datasets.html
text: https://pytorch.org/text/stable/datasets.html
audio: https://pytorch.org/audio/stable/datasets.html
这里使用手写数据集举例:Fashion-MINST
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
training_data = datasets.FashionMNIST(
root="data", #data path
train=True, #train or test data set
download=True,#download from the internet or use data in root path
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
数据集可视化
labels_map = {
0: "T-Shirt",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
sample_idx = torch.randint(len(training_data), size=(1,)).item()
img, label = training_data[sample_idx]
figure.add_subplot(rows, cols, i)
plt.title(labels_map[label])
plt.axis("off")
plt.imshow(img.squeeze(), cmap="gray")
plt.show()
函数sample_idx = torch.randint(len(training_data), size=(1,)).item() 表示随机采样一幅图片的索引。
导入自己的数据集
重载Dataset函数
import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
这里几个重要的成员变量:
self.img_labels: 图像标签对应表
self.img_dir: 原始图像位置
self.img_transform: 原始图像转换
self.target_transform: 标签转换
len(): 数据长度
getitem(): 获取数据和对应的标签,内部使用(img_labels.iloc[idx, 0])
label.csv文件内容,映射图片在root下的名称和对应标签
tshirt1.jpg, 0
tshirt2.jpg, 0
......
ankleboot999.jpg, 9
使用dataloader准备数据
使用minibatch方式训练,两个重要参数:
batch_size: batch 大小
shuffle: 随机抽取数据
from torch.utils.data import DataLoader
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")
使用transforms转换数据
因为数据集输入输出的数据格式和label格式表达各不相同,为适配网络,需要将数据和标签转换为网络能用的格式,torch提供transforms方法完成这一任务。
import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda
ds = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)
这里Tensor.scatter_()函数根据y为索引设置为value=1;
lambda转换介绍如下:
https://pytorch.org/tutorials/beginner/basics/transforms_tutorial.html#lambda-transforms