Boosting

boosting是集成学习中的一个大家族,本次记录boosting的相关概念以及与bagging的区别。

boosting思想

Boosting是一族可以将若学习器提升为强学习器的算法,代表算法为AdaBoost。该算法的工作机制:先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后基于调整后的样本分布来训练下一个基学习器。如此反复进行,直至学习器数目达到事先指定的值T,最终将这T个基学习器进行加权结合。

boosting与bagging

1、样本选取方式
bagging是有放回地均匀采样,从原始训练集中选取的子集之间是相互独立的。
boosting:每一轮的训练集不变,只是训练集中的每个样例在分类器中的权重发生变化,而这个权值是根据上一轮分类结果进行调整的。

2、样例权重
bagging:均匀采样,样例权重相同
boosting:根据错误率不断调整样例的权重,错误率越大,权重越大。

3、预测函数
bagging:所有预测函数的权重相同
boosting:每个弱分类器具有不同的权重,分类误差小的分类器会有更大的权重(因为要在最后的结合中起更大的作用)

4、并行计算
bagging:各个预测函数可以并行生成
boosting:各个预测函数顺序生成,因为后一个学习器的参数需要前一个模型的结果。

boosting与bagging的各自适用场景

  1. 特征维度
    特征维度过大时,bagging(特指RF)优于boosting(特指adaboost),但是更准确来讲,作为梯度提升树的变种xgb和lgb当然也具备列采样甚至更好的算法来应对这种情况,这里只说传统意义下的bagging与boosting要如何选择。
  2. 数据量
    数据量过大情况下,优先使用bagging,因为bagging的树的生长过程是并行的,而boosting是串行。
  3. 模型鲁棒性
    若训练集较小,此时使用boosting训练如果参数控制不好容易过拟合,因为boosting本身是一个关注降低模型偏差的方法,而bagging是降低模型方差的方法,因为bagging的各种样本及属性的随机扰动策略使得模型会鲁棒性较好,但是当然我们需要关注基模型的偏差。
  4. 数据量适中,维度大小适中的情况下
    优先选用boosting,因为boosting的精度更高一些,因为其对各个样本是给予相关权重的,而不像bagging是均匀看待和抽样。
  5. 噪声点
    Boosting算法对噪声异常敏感,从偏差与方差间的权衡来看,如果数据是嘈杂的,Boosting算法可能会呈现出较高的模型方差。然而在其他情况下,Boosting算法往往能够取得较好的效果。

转载注明:https://www.jianshu.com/p/dcdc4d7425d0

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353