opencv-PIL-matplotlib-Skimage-Pytorch图片读取区别与联系

世界静好 | 我心依然

opencv2

  • 图像类型:BGR
  • 数据类型:numpy
  • 元素类型:uint8
  • 通道格式:H,W,C
import cv2
import numpy as np

img = cv2.imread('image.jpg')      #读取图片
cv2.imshow('the window name',img)  #显示图像
cv2.waitKey()                      
CV2.imwrite('new_image.jpg',img)   #保存图片
print(type(img))   #数据类型(numpy)
print(img.dtype)   #元素类型(uint8)
print(img.shape)  #通道格式(H,W,C)
print(img.size)   #像素点数
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)  #BGR转RGB
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  #BGR转灰度图
gray = cv2.imread('image.jpg',cv2.IMREAD_GRAYSCALE)  #灰度图读取
image = cv2.resize(img,(100,200),interpolation=cv2.INTER_LINEAR) #resize
b,g,r = cv2.split(img)   #通道分离
merge_img = cv2.merge((b,g,r))   #通道合并

PIL

  • 图像类型:RGB
  • 数据类型:Image
  • 元素类型:uint8
  • 通道格式:H,W,C
from PIL import Image
import numpy as np

img = Image.open('image.jpg') #读取图片
img.show()  #展示图片
print(img_pil.mode)     #图像类型
print(img_pil.size)     #图像的宽高
img_arr = np.array(img)   #转为numpy形式,(H,W,C)
new_img = Image.fromarray(img_arr) #再转换为Image形式
new_img.save('newimage.jpg') #保存图片
gary = Image.open('image.jpg').convert('L')  #灰度图
r,g,b = img.split()  #通道的分离
img = Image.merge('RGB',(r,g,b))  #通道的合并
img_copy = img.copy()   #图像复制
img_resize = img.resize((w,h))   #resize

matplotlib

  • 图像类型:RGB
  • 数据类型:numpy
  • 元素类型:float
  • 通道格式:H,W,C
import matplotlib.pyplot as plt
import numpy as np 

img  = plt.imread('image.jpg') #读取图片
plt.imshow(img) 
plt.show()
plt.savefig('new_img.jpg')  #保存图片
img_r = img[:,:,0]   #灰度图
plt.imshow(img_r,cmap='Greys_r')  #显示灰度图

Skimage

  • 图像类型:RGB
  • 数据类型:numpy
  • 元素类型:uint8(三原色),float64(resize后或者灰度图,且为0~1)
  • 通道格式:H,W,C
import skimage
from skimage import io,transform

import numpy as np
image= io.imread('test.jpg',as_grey=False) #读取图片 False原图,True灰度图
print(type(img))   #数据类型(numpy)
print(img.dtype)   #元素类型(uint8)
print(img.shape)  #通道格式(H,W,C)
image = transform.resize(image,(h, w),order=1) # order默认是1,双线性

Pytorch.ToTensor

  • 接受对象:PIL Image或者numpy.ndarray
  • 接受格式:输入为H*W*C
  • 处理过程:自己转换为C*H*W,再转为float后每个像素除以255

各种库之间的转换

  • Tensor转为numpy:
    np.array(Tensor)
  • numpy转为Tensor:
    torch.from_numpy(numpy.darray)
  • PIL.Image.Image换成numpy:
    np.array(PIL.Image.Image)
  • numpy转成PIL.Image.Image:
    注意:保证numpy.ndarray 转换成np.uint8,numpy.astype(np.uint8),像素值[0,255];  
    灰度图像保证numpy.shape为(H,W),不能出现channels 
    这里需要np.squeeze()。  
    彩色图象保证numpy.shape为(H,W,3)```
    
  • PIL.Image.Image转换成Tensor:
    彩色图像
    img2=Image.open('1.tif').convert('RGB')
    import torchvision.transforms as  transforms
    trans=transforms.Compose([transforms.ToTensor()])
    a=trans(img2)
    a=np.array(a)
    maxi=a.max()
    a=a/maxi*255
    a=a.transpose(1,2,0).astype(np.uint8)
    b=Image.fromarray(a)
    b
    
  • PIL.Image转换成OpenCV
    import cv2  
    from PIL import Image  
    import numpy  
      
    image = Image.open("1.jpg")  
    image.show()  
    img = cv2.cvtColor(np.array(image),cv2.COLOR_RGB2BGR)  
    cv2.imshow("OpenCV",img)  
    cv2.waitKey()  
    

注释:cv2写图像时,灰度图像shape可以为(H,W)或(H,W,1)。彩色图像(H,W,3)
要从numpy.ndarray得到PIL.Image.Image,灰度图的shape必须为(H,W),彩色为(H,W,3)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容