Spark 7. 共享变量

共享变量

原文地址: http://spark.apache.org/docs/latest/programming-guide.html#shared-variables
仅限交流使用,转载请注明出处。如有错误,欢迎指出!

Henvealf/译

一般情况下, Spark 的 map 或者 reduce 操作(task)的方法是运行在远程的集群节点上的,且会在每一个操作上复制一份变量。因为节点之间的变量不会共享,所以在远程机器上的变量的更新不会传播到驱动器程序上。通用的解决方法,就是使用可以被全部的 task 读写的共享变量,但他会拖慢运行效率。然而, Spark 还是为两种普遍的使用模式提供了两种共享变量的受限类型:广播变量与增量器。

广播变量(Broadcast Variables)

广播变量允许在每个机器中的程序里维护一个只读的缓存变量,而不是在每个 task 中传送一个拷贝。他能够被用于,举例来说,他会使用一种高效率的方式为每个节点提供一份大的输入数据集的拷贝。Spark 也尝试使用一个高效率的广播算法去减少分发广播变量时的交互开销。

Spark 的 actions 的执行会经历一系列通过分布式的 "shuffle" 操作来分离的阶段。Spark 需要各个阶段中的 task 来自动广播公用的数据。数据广播的方式缓存进序列化结构和在运行每一个 task 之前进行反序列化。这意味着仅仅当task经过了需要相同数据的多个阶段时,或者按照序列化结构缓存数据是重要的时候,才确定创建广播变量。

通过调用 SparkContext.boradcast(v), 就可以从变量 v 中创建出一个广播变量。变量 v 此时已经被包装进了广播变量在中,可以在调用 value() 函数,来获取到变量。示例代码如下:

Scala

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)

scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)

Java

Broadcast<int[]> broadcastVar = sc.broadcast(new int[] {1, 2, 3});

broadcastVar.value();
// returns [1, 2, 3]

创建了一个广播变量之后,在集群上运行的任何方法中,都应该使用广播变量来代替与 v 中的值相同的变量,这样就可以避免 v 的值在节点上出现了两次。另外,v 的值不要去修改,确保在所有节点上的广播变量都是相同的值。

增量器 (Accumulators)

增量器是一个只能进行加操作的变量,用于操作之间的协作与交互,因此他也支持高效率的并发。很像 MapReduce 中的 Counter。原生的增量器支持数字类型,现在程序可以支持新的类型。

如果你给了增量器一个名字,那个你就能在 Spark UI 上看到他。通过他来理解程序运行的各个阶段(注意,在 Python 中并不支持)。

Scala

一个数字增量器可以通过调用 SparkContext.longAccumulator() 或者 SparkContext.doubleAccumulator() 来创建。然后在集群上使用 add 方法来进行加操作。然而,集群不能读取他的值。只可以在驱动器程序上读取增量器的值。使用 value() 方法。

下面就使用增量气来将一个数组中的值加一块:

scala> val accum = sc.longAccumulator("My Accumulator")
accum: org.apache.spark.util.LongAccumulator = LongAccumulator(id: 0, name: Some(My Accumulator), value: 0)

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum.add(x))
...
10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

scala> accum.value
res2: Long = 10

上面上使用原生的数字类型的增量器。下面看看如何创建一个自定义类型的增量器。你的增量器需要继承 AccumulatorV2 抽象类。你需要重写(override)他的几个方法:

  • reset : 将迭代器中的值设置为 0。
  • add:增加增量器中的值。
  • merge: 合并其他同类型的增量器。

其他需要重写的方法请看 Scala API 文档。

下面我们有一个 MyVector 类,代表了数学上的向量,下面就是 MyVector 的实现类:

object VectorAccumulatorV2 extends AccumulatorV2[MyVector, MyVector] {
  val vec_ : MyVector = MyVector.createZeroVector
  def reset(): MyVector = {
    vec_.reset()
  }
  def add(v1: MyVector, v2: MyVector): MyVector = {
    vec_.add(v2)
  }
  ...
}

// Then, create an Accumulator of this type:
val myVectorAcc = new VectorAccumulatorV2
// Then, register it into spark context:
sc.register(myVectorAcc, "MyVectorAcc1")

增量器的更新在内部执行的 仅仅是 action 。 Spark 保证每个 task 在增量器上的更新仅仅被应用一次,也就是说,重启 task 将不会更新值。在 transformations 中,用户应该知道,如果 job 的阶段被重新运行,每一个 task 的更新会被应用多次。

迭代器不会改变 Spark 的懒惰评估。如果更新操作是作用在一个 RDD 上,他的值将只会 在作为action 的一部分 来进行计算之后才进行更新。随之而来的,当使用一个懒惰的 transformation(比如 map() )来更新值,增量器不会保证一定执行更新, 下面的代码就展示了所说的情况:

Scala

val accum = sc.longAccumulator
data.map { x => accum.add(x); x }
// 这里 accum 将一直为 0, 因为没有 action 来触发 `map` 任务的计算。

Java

LongAccumulator accum = jsc.sc().longAccumulator();
data.map(x -> { accum.add(x); return f(x); });
// 这里 accum 将一直为 0, 因为没有 action 来触发 `map` 任务的计算。


Python

accum = sc.accumulator(0)
def g(x):
  accum.add(x)
  return f(x)
data.map(g)

End !!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容