原子核的结构

都说活到老学到老,可我最近学检测方面的知识总是记不住,书看了两遍了还是记不住理解不了。俗话说的好眼过千遍不如手过一遍,我就用最笨的办法一个字一个字打出来,加上自己的理解与大家分享。如有错误还请各位专业大大指出来,闲话不多说了我们来看看今天的知识原子核结构。

原子核的半径为10-~10- cm.约为原子半径的万分之一。如果把原子设想成一个直径为10 m的球体,那么原子核也只有芝麻那么大,所以说原子内部的绝大部分是空的。(注:了解什么是原子核与原子核的内部)

原子核虽小,却占有原子的99%以上的质量,通过散射实验可以测定核的近似半径,实验表明核的半径r与原子质量数A的1/3次方成正比。这说明无论哪一种元素,其核的密度是相同的。(注:无论那种元素它的密度都是相同的)

正如原子中的电子处于运动中一样,核中的粒子,即质子和中子也处于运动中,因而核具有角动量和磁矩。光谱分析表明,核的角动量和磁矩也是量子化的。(注:量子化的产生由来)

原子核的总质量总是小于它的组成部分的质量和,这是因为其中的一部分质量用于转变成原子核的结合能。即把原子核中粒子结合在一起的吸引力有关的负电位能的质量当量。例如,氢同位素氘的核由1个质子和1个中子组成,已知两者质量之和为mp+mn=2.015942 u.而氘核的实际质量md=2.013 552 u,质量差值mp+mn-md=0.002 390 u.由质能公式E= moC可求得相应的能量为2.225 MeV,这部分能量为结合能。(注:说明原子核的总质量总是小于它的组成部分的质量和,予以举例说明)在原子核内,带正电的质子间存着库仑斥力,但质子和中子仍能非常紧密地结合在一起,这说明核内存在着一个非常大的力,即核力。核力具有以下性质:

第一,核力与电荷无关,无论中子还是质都受到核力的作用。

第二,核力是短程力,只有在相邻原子核之间发生作用,因此,一个核子所能相互作用的其他核子数目是有限的,这称为核力的饱和性

第三,核力比库仑力约大100倍,是一种强相互作用。

第四,核力能促成粒子的成对结合(例如,两个自旋相反的质子或中子)以及对对结合(即总自旋为零的一对质子和一对中子的结合)。(注:核力的由来与核力的性质)

根据以上核力的性质以及核力与库仑力之间的竞争,可以定性了解原子核的稳定性,电于核力促成原子核成对结合和对对结合,如果不考虑库仑力,最稳定的应是中子数和质子数相等的那些核,考虑库仑斥力后,则应是包含更多中子的核更稳定。但中子数过多的核又是不稳定的,因为没有足够的质子来与中子配对;质子过多的核也是不稳定的,因为库仑斥力将随之增大。核稳定性与中子数、质子数的关系为:对小质量数的核,N/Z=1附近较稳定,这个比值随核质量数的增大而增加:对大质量数的核,N/Z=1.6附近的核较稳定。

采用人为的方法,以中子、质子或其他基本粒子作为炮弹轰击原子核,从而改变核内质子或中子的数目,便可以制造出新的核素,也可以使稳定的核素变为不稳定的核素。(注:简述如何让原子核发生变化)

现已发现的约2 000种核素中,天然存在的有300多种,其中有30多种是不稳定的:人工制造的有1 600多种,其中绝大部分是不稳定的。不稳定的核素会自发蜕变,变成另一种核素,同时放出各种射线,这种现象称为放射性衰变。

放射性衰变有多种模式,其中最主要的有:

1. a衰变放出带2个正电荷的氦核,衰变后形成的子核,核电荷数较母核减2,即在周期表上前移两位,而质量数较母核减少4。

2. β衰变包括β-衰变、β+时衰变和轨道电子俘获,其中:

β-衰变:母核放出电子,衰变后子核的质量数不变,而核电荷数增加1,即在周期表上后移一位。

轨道电子俘获:母核俘获核外轨道上的一个电子(最常见的是俘获K层电子,称为K俘获),核中的一个质子转为中子,即子核在周期表上前移一位。

3. r衰变放出波长很短的电磁辐射,衰变前后核的质量数和电荷数均不发生改变。

r衰变总是伴随着a衰变或β衰变而发生,母核经α衰变或β衰变到子核的激发态。这种激发态核是不稳定的,它要通过r衰变过渡到正常态。所以r射线是原子核由高能级跃迁到低能级而产生的。(注:射线的产生与由来)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容