Python一行代码实现快速排序

上期文章排序算法——(2)Python实现十大常用排序算法
为大家介绍了十大常用排序算法的前五种(冒泡、选择、插入、希尔、归并),因为快速排序的重要性,所以今天将单独为大家介绍一下快速排序!

一、算法介绍

排序算法(Sorting algorithm)是计算机科学最古老、最基本的课题之一。要想成为合格的程序员,就必须理解和掌握各种排序算法。其中"快速排序"(Quicksort)使用得最广泛,速度也较快。它是图灵奖得主C. A. R. Hoare(托尼·霍尔)于1960时提出来的。


托尼·霍尔

二、算法原理

快排的实现方式多种多样,猪哥给大家写一种容易理解的:分治+迭代,只需要三步:

  1. 在数列之中,选择一个元素作为"基准"(pivot),或者叫比较值。
  2. 数列中所有元素都和这个基准值进行比较,如果比基准值小就移到基准值的左边,如果比基准值大就移到基准值的右边
  3. 以基准值左右两边的子列作为新数列,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

举个例子,假设我现在有一个数列需要使用快排来排序:{3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48},我们来看看使用快排的详细步骤:

  1. 选取中间的26作为基准值(基准值可以随便选)
  2. 数列从第一个元素3开始和基准值26进行比较,小于基准值,那么将它放入左边的分区中,第二个元素44比基准值26大,把它放入右边的分区中,依次类推就得到下图中的第二列。
  3. 然后依次对左右两个分区进行再分区,得到下图中的第三列,依次往下,直到最后只有一个元素
  4. 分解完成再一层一层返回,返回规则是:左边分区+基准值+右边分区
快速排序.png

三、代码实现

quick_sort = lambda array: array if len(array) <= 1 else quick_sort([item for item in array[1:] if item <= array[0]]) + [array[0]] + quick_sort([item for item in array[1:] if item > array[0]])

是不是很简洁很秀,如果再有面试官让你手写一个快排,你就把这行写上去吧,面试官见了都要喊你秀儿,哈哈。

在你感叹python吊炸天的同时,你因该考虑到代码的可读性问题,lambda函数设计是为了代码的简洁性,但是滥用的话会导致可读性变得极差,而且现在pep8代码规范中也不建议使用lambda函数了,建议使用关键字def去定义一个函数,所以下面猪哥给大家写一段符合pythonic风格的快排代码

def quick_sort(arr):
    """快速排序"""
    if len(arr) < 2:
        return arr
    # 选取基准,随便选哪个都可以,选中间的便于理解
    mid = arr[len(arr) // 2]
    # 定义基准值左右两个数列
    left, right = [], []
    # 从原始数组中移除基准值
    arr.remove(mid)
    for item in arr:
        # 大于基准值放右边
        if item >= mid:
            right.append(item)
        else:
            # 小于基准值放左边
            left.append(item)
    # 使用迭代进行比较
    return quick_sort(left) + [mid] + quick_sort(right)

四、算法分析

  1. 稳定性:快排是一种不稳定排序,比如基准值的前后都存在与基准值相同的元素,那么相同值就会被放在一边,这样就打乱了之前的相对顺序
  2. 比较性:因为排序时元素之间需要比较,所以是比较排序
  3. 时间复杂度:快排的时间复杂度为O(nlogn)
  4. 空间复杂度:排序时需要另外申请空间,并且随着数列规模增大而增大,其复杂度为:O(nlogn)
  5. 归并排序与快排 :归并排序与快排两种排序思想都是分而治之,但是它们分解和合并的策略不一样:归并是从中间直接将数列分成两个,而快排是比较后将小的放左边大的放右边,所以在合并的时候归并排序还是需要将两个数列重新再次排序,而快排则是直接合并不再需要排序,所以快排比归并排序更高效一些,可以从示意图中比较二者之间的区别。
    归并排序.png

五、快排优化

快速排序有一个缺点就是对于小规模的数据集性能不是很好。可能有人认为可以忽略这个缺点不计,因为大多数排序都只要考虑大规模的适应性就行了。但是快速排序算法使用了分治技术,最终来说大的数据集都要分为小的数据集来进行处理,所以快排分解到最后几层性能不是很好,所以我们就可以使用扬长避短的策略去优化快排:

  1. 先使用快排对数据集进行排序,此时的数据集已经达到了基本有序的状态
  2. 然后当分区的规模达到一定小时,便停止快速排序算法,而是改用插入排序,因为我们之前讲过插入排序在对基本有序的数据集排序有着接近线性的复杂度,性能比较好。

这一改进被证明比持续使用快速排序算法要有效的多。

六、模拟面试

  • 面试官:你了解快排吗?
  • 你:略知一二
  • 面试官:那你讲讲快排的算法思想吧
  • 你:快排基本思想是:从数据集中选取一个基准,然后让数据集的每个元素和基准值比较,小于基准值的元素放入左边分区大于基准值的元素放入右边分区,最后以左右两边分区为新的数据集进行递归分区,直到只剩一个元素。
  • 面试官:快排有什么优点,有什么缺点?
  • 你:分治思想的排序在处理大数据集量时效果比较好,小数据集性能差些。
  • 面试官:那该如何优化?
  • 你:对大规模数据集进行快排,当分区的规模达到一定小时改用插入排序,插入排序在小数据规模时排序性能较好。
  • 面试官:那你能手写一个快排吗?
  • 你:
quick_sort = lambda array: array if len(array) <= 1 else quick_sort([item for item in array[1:] if item <= array[0]]) + [array[0]] + quick_sort([item for item in array[1:] if item > array[0]])

七、总结

快排是面试与考试中最高频的一种排序算法(没有之一),请大家务必理解与掌握,欢迎大家在评论区留言,同时也希望大家转发分享让更多的人爱上python这门语言。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容