keras_CNN

本文主要讲CNN(Convolutional Neural Networks)卷积神经网络在 keras 上的代码实现。 用到的数据集还是MNIST。不同的是这次用到的层比较多,导入的模块也相应增加了一些。在数据预处理部分也与之前有所不同


Demo.py

from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten
from keras.optimizers import Adam

# 加载数据集
#Keras 自身就有 MNIST 这个数据包,再分成训练集和测试集。x 是一张张图片,y 是每张图片对应的标签,即它是哪个数字。
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据预处理
X_train = X_train.reshape(-1, 1, 28, 28)
X_test = X_test.reshape(-1, 1, 28, 28)
# 将label变为向量
# 对于 y,要用到 Keras 改造的 numpy 的一个函数 np_utils.to_categorical,把 y 变成了 one-hot 的形式,即之前 y 是一个数值, 在 0-9 之间,现在是一个大小为 10 的向量,它属于哪个数字,就在哪个位置为 1,其他位置都是 0。
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)


# 构建神经网络
model = Sequential()
#添加第一个卷积层,滤波器数量为32,大小是5*5,Padding方法是same即不改变数据的长度和宽带。 
#因为是第一层所以需要说明输入数据的 shape ,激励选择 relu 函数
# 卷积层一
model.add(Conv2D(32, kernel_size = (5, 5), strides = (1, 1), padding = 'same', activation = 'relu', input_shape = (1, 28, 28)))
#model.add(Convolution2D(
#    nb_filter=32,
#    nb_row=5,
#    nb_col=5,
#    border_mode='same',     # Padding method
#    dim_ordering='th',    # 采用 theano 的 input 格式  
#    input_shape=(1,         # channels
#                 28, 28,)    # height & width
#))
#model.add(Activation('relu'))
# 池化层一 pooling(池化,下采样),分辨率长宽各降低一半,输出数据shape为(32,14,14)
model.add(MaxPooling2D(pool_size = (2, 2), strides = (1, 1), padding = 'same'))
#model.add(MaxPooling2D(
#   pool_size=(2, 2),
#    strides=(2, 2),
#    border_mode='same',    # Padding method
#))
# 卷积层二
model.add(Conv2D(64, kernel_size = (5, 5), strides = (1, 1), padding = 'same', activation = 'relu'))
# 池化层二
model.add(MaxPooling2D(pool_size = (2, 2), strides = (1, 1), padding = 'same'))
#model.add(Convolution2D(64, 5, 5, border_mode='same'))
#model.add(Activation('relu'))
#model.add(MaxPooling2D(pool_size=(2, 2), border_mode='same'))

# 全连接层一,经过以上处理之后数据shape为(64,7,7),需要将数据抹平成一维,再添加全连接层1
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))

# 全连接层二,即输出层
model.add(Dense(10))
model.add(Activation('softmax'))

# 选择并定义优化求解方法
adam = Adam(lr = 1e-4)

# 选择损失函数、求解方法、度量方法,设置adam优化方法,loss函数, metrics方法来观察输出结果
model.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs = 2, batch_size = 32)

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)

print ''
print 'loss: ', loss
print 'accuracy: ', accuracy

结果:

Using TensorFlow backend.
Epoch 1/2
60000/60000 [==============================] - 55s - loss: 0.4141 - acc: 0.9234
Epoch 2/2
60000/60000 [==============================] - 56s - loss: 0.0743 - acc: 0.9770
 9920/10000 [============================>.] - ETA: 0s
loss:  0.103529265788
accuracy:  0.9711
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容