独热编码(one-hot coding)

1 为什么需要独热编码?
    直接上案例,一份数据,特征为["颜色", "尺码", "喜欢度", "类别"],具体数据为[['green','M', 10.1,'class1'], ['red','L', 13.5,'class2'], ['blue','XL', 15.3,'class1']]。
    这几项中,喜欢度直接是数值型,不用管。类别是label,先不说。对于颜色与尺码这两项,应该如何编码?
    先说尺码,尺码的编码形式应该是{"M": 1, "L": 2, "XL": 3},直接转换成数字的形式。那么颜色这一项是否可行?直接将颜色字段编码为{"green":1, "red": 2, "blue": 3},这样似乎否可行?
    先上结论,这样不行。我们在模型训练的时候,会对特征做什么?无非就是计算距离。那现在计算green,red,blue三个的距离。d(green, red)=2-1=1,d(red, blue)=3-2=1,d(green, blue)= 3-1=2。问题来了,这几个颜色之间的差距,应该是一样的。都是不同的颜色,不应该映射到欧氏空间,距离不等。这就是这种编码的问题所在。颜色这个离散特征之间没有大小的意义,应该使用独热编码。
    那么型号这个字段可以吗?回答是可以的。同样计算距离。d(M,L)=2-1=1,d(L, XL)=3-2=1,d(M,XL)=3-1=2。XL是真的比M大两号的。当离散特征的取值有大小的意义,就应该使用这种数值映射。

2 独热编码现成的包
     现成的包有不少,我就说一个,这个简单,能用就行了。pandas自带了独热编码的方法,get_dummies()。用起来很简单。还是以上边的例子。

import pandas as pd

data = pd.DataFrame([['green', 'M', 10.1, 'class1'], ['red', 'L', 13.5, 'class2'], ['blue', 'XL', 15.3, 'class1']])
data.columns = ['color', 'size', 'prize', 'class label']
size_d = {"M": 1, "L": 2, "XL": 3}
data["size"] = data["size"].map(size_d )
lable = {"class1": 1, "class2": 2}
data["class label"] = data["class label"].map(lable)
df = pd.get_dummies(data)
df.head()
   size  prize  class label  color_blue  color_green  color_red
0     1   10.1            1           0            1          0
1     2   13.5            2           0            0          1
2     3   15.3            1           1            0          0

3 独热编码的优缺点

优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355