2018-01-11 Hadoop Platform and Application Framework -- Lesson 5 Applications and Services

Overview of the Types of Hadoop-based application:

Databases/Stores

    Avro: It lets us use date structures within context of Hadoop MapReduce jobs, so process data very efficiently.

    HBase: distributed non-relational database

    Cassandra: distributed data management system

Querying

    Pig: analyzing large data sets in HDFS, it has its own high-level language (Pig Latin) for you.

    Hive: Query and manage large datasets in HDFS or in HBase, with a SQL-like interface.

    Impala: High-performance and low-tatency query with SQL-like interface, providing from Cloudera VM (Hue).

    Spark: General processing engine for streaming, SQL, machine learning and graph processing

Machine Learning/Graph Processing

    Giraph: Iterative graph processing using Hadoop framework

    Mahout: Framework for machine learning applications using Hadoop, Spark.

    Spark: General processing engine for streaming, SQL, machine learning and graph processing


Apache Pig

Two componets:

    Own script language - PigLatin. PigLatin can be embedded in host language like Java

    Infrastructure Layer - it takes what we wrote in PigLatin, and transforms into back-end jobs of Tez or MapReduce, etc.


Usage:

    extract / transform / load / handling "raw" data. more


Extendibility:

    It has built-in operators and functions, as well as supporting us to write constant functions if we have complex processing to do.


Use cases:

Step1 . Put a passwd into HDFS

    [cloudera@quickstart ~]$ hadoop fs -put /etc/passwd /user/cloudera/

        * Command "hadoop fs ..." == "hdfs dfs ..."

Step 2. With  MapReduce as execution type and launch Pig inteactive shell "grunt"

    [cloudera@quickstart ~]$ pig -x mapreduce           --> it use MapReduce to track data and print it out.

    grunt>

Step 3. wrote PigLatin - PigLatin need ';' to end one command. Like below:

     grunt> A = load '/user/cloudera/passwd' using PigStorage(':');        --> telling the deparator is colon

    grunt> B = foreach A generate $0, $4, $5 ;                                     --> doing the sub-setting part

    grunt> dump B;

Step 4. Store B output into HDFS

    grunt> store B into 'userinfo.out';

    grunt> quit;

Step 5. Check the result

     [cloudera@quickstart ~]$ hdfs dfs -ls /user/cloudera/



Apache Hive

Two componets:

    SQL Language - HiveQL

    Interactive Client - beeline / Hive own CLI / Hcatalog / WebHcat. It takes what we wrote in HiveQL, and transforms into back-end jobs of Tez or Spark, MapReduce, Yarn, etc.

Usage:

    As Data warehouse software, handling data in HDFS, HBase. It can do:

        Date mining, analytics

        Machine Learning

        Ad hoc analysis

Extendibility:

    It has built-in operators and functions.

Use cases:

    Step 1. Put a passwd into HDFS

        [cloudera@quickstart ~]$ hadoop fs -put /etc/passwd /tmp/

    Step 2. lauch beeline with DB URL

        [cloudera@quickstart ~]$ beeline -u jdbc:hive2://

    step 3. Create table 'userinfo'

    Step 4. Overwrite table with the data from HDFS /tmp/passwd  and then do querying


Apache HBase

Two componets:

    SQL Language - like Hive, Spart, Impala.

    Interactive Shell - hbase shell (Other options: HBase MapReduce / HBase API/ HBase External API). It takes what we wrote, and runs it on top of HDFS.

Usage:

    Scalable data store as Non-relational distributed database

Feature:

    Compression - lower the network traffic and the size of data on the disk

    In-memory operations - MemStore, BlockCache

    Consistency - data transation between ?? without intermediate changes

    High Availability - spreads out "keys" across nodes/various regions, and it has its owne replication as well as HDFS replication mechanism.

    Automatic Shareing - table is distributed in regions that could benifit performance

    Security - authorization process for both client side and server side

Use cases:

    Step 1. Launch hbase shell

        [cloudera@quickstart ~]$ hbase shell

        hbase(main):001:0>

    Step 2. Create table 'userinfotable'

    Step 3. Fill data for the table and scan data



Lesson 5 Slides

Other applications/Services start/check , for zookeeper,  Hive-metastore, hadoop-httpfs

Following are references for some of the material covered:

    Pig Documentation:

    http://pig.apache.org/docs/r0.15.0/start.html

    Pig Latin basics:

    http://pig.apache.org/docs/r0.15.0/basic.html

    HIVE Language Manual:

    https://cwiki.apache.org/confluence/display/Hive/LanguageManual

    HBase Reference Guide:

    http://hbase.apache.org/book.html#arch.overview

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352