宿主图像DWT
选高频分块
块进行SVD
选择最大的奇异值
量化 嵌入水印
水印混沌加密
Contourlet变换
中频子带进行分块后奇异值分解
水印嵌入最大奇异值中
缺点:对平移操作和大角度旋转的效果不好
(Slantlet)SLT 斜点变换,类似DWT,选择左上角的LL子带
LL子带进行SVD奇异值分解
RMD(递归抖动调制)以嵌入水印
水印提取过程:可以根据RDM无损地恢复出水印
对源水印进行编码,并对奇异值进行分解
四级离散小波变换DWT,得到HL子带
HL的奇异值矩阵嵌入到主图像的Y CB CR中【插入Y鲁棒性好,插入CB不可感知性更好】
亮点:信道编码(对源水印的编码)
宿主图像的QPHFM,取其振幅
振幅进行混沌扰动,得到特征图像
特征图像和水印图像进行异或,产生关键图像
【补充:Tucker分解,用于划分宿主图像(沿着三个颜色通道),以便提取三个要素图。第一个要素图用于嵌入水印,以确保鲁棒性;因为它包含HDR的大部分能量;第一个要素图被分为非重叠块,每个块上进行Schur分解,以生成单一矩阵。】
宿主图像Tucker分解,提取第一个特征图Q1
Q1分解为非重叠块
每块进行Schur分解,得到矩阵F
建立F中一对系数的大小关系,以嵌入水印
宿主图像应用 非采样轮廓contourlet变换
选择低频子带
根据HPM(key中的内容)确定是否嵌入水印
若嵌入,奇异值分解,选择U的第一列
嵌入算法:嵌入后 使得
若水印位为1: U21-U41<0且量级>阈值
若水印位为0: U21-U41>0且量级>阈值
逆SVD
逆NSCT
(遥感图像)
将水印信息->QR码->编码为角度,形成圆角模板
宿主图像-》B通道-〉恰感知失真JND-》分块
修改相应的JND来嵌入水印
提取:通过检测圆角模板中隐藏的角度信息,获取水印信息
9.基于数据挖掘(决策树归纳ID3)和DCT
宿主图像 DCT变换-》块转换成矢量Zig-Zag并存储->用来训练 决定是否合适嵌入水印
嵌入过程,与水印图像的DCT相加
10.抗旋转
水印序列排列成圆环状
嵌入在宿主图像的中频区域
利用傅立叶变换,图像旋转可以转化为水印的平移
利用随机序列的互协方差函数的峰值位置检测出平移尺度
===简单的才是美的,一定有一种既简单又高效的方法=====
🌟能否给某块打上标识,即 不用它,这就要找到 变换中的 不变量。就是 所有的块都统一的。可以用它来分类的 并且对于攻击 是不变的
宿主图像 离散轮廓变换
对选定的坐标 计算系数
将水印数据隐藏到角度比率
13.墨西哥帽小波/扩频/自适应
宿主图像 DWT变换
水印像素-》伪噪声PN
根据‘水印与文档’的比例 调整嵌入强度()
提取水印
确定水印图像DWT系数的统计分布,并利用得到的概率分布函数(pdf)设计基于重尾族Cauchy统计模型,该模型能够精确地模拟图像的非高斯DWT系数。研究了该方法在不同水印与文档比率的攻击下的鲁棒性。
用到的一些优化方法:
【多目标粒子群优化MOPSO】
【比例自适应自动关联矩阵 和 高丝拉拉西亚运算】来确定圆形特征区域
【最佳选择过程 描述为背包问题 + 遗传算法】
【SVD的U分量嵌入,可以解决误报问题】
【扩频技术,使用查找表】
【布谷鸟搜索,确定最佳缩放因子】
【拉格朗吉方案 减少水印失真】
【】
【】
二、复数域
复数域是指图像分解后得到的矩阵的数值是复数,这个名词是我乱用的。
嵌入方法
1).参考指数矩
文章Geometrically resilient color image zero-watermarking algorithm based on qua- ternion Exponent moments
DOI http://dx.doi.org/10.1016/j.jvcir.2016.10.004
文章 基于四元数指数矩的鲁棒彩色图像水印算法
1.基于扩频原理的水印嵌入方案:对水印预处理-误差纠错编码->利用相移键控(PSK)等调制方法,对水印进行频谱扩展->对扩频水印信息直接加入到原始图像的像素值中
提取:盲或非盲
2.同步校正:计算出经受了哪些攻击,再进行逆变换
3.同步不变量:找出攻击时,图像中的不变量
Fourier-Mellin:计算DFT,对DFT的幅值LPM,再DFT
Radon变换:拐角检测算法找到鲁棒性最强的拐角,作为原点
Zernike:
直方图:
提示:不仅需要考虑色彩分量之间的关系,还需要考虑变换的特征,如系数间的对称性及数字水印的同步
4.四元数分解与传统分解之间的关系
ER = AR + iBR + jCR + kDR
2)Zernike矩
文章Geometric invariant watermarking by local Zernike moments
of binary image patches
发表于 Signal Processing 2013
【特征值提取EBFD】:计算出分解后的幅度和角度
半径定义为40
1.把原图分解为二值图像
2.二值图像应用Zernike分解(阶数设定为40),并且证明了magnitude(大小)是不变量,可用于水印嵌入
3.用扩频技术进行水印嵌入
Y = X + å*W
å表示嵌入强度(设为10)
4.提取:求水印的平均值。当结果大于我们设定的阈值时,可成功提取。
优点:
1.利用了Zernike矩阵magnitude不变的特性,如果变了,就说明嵌入水印了。
2.在每个二值图像中都试一下,看嵌入哪个里面PSNR最合适
本文实验结果如下
(实验用的是I4)
文章Analysis of noise sensitivity of Tchebichef and Zernike moments with application to image watermarking
1.将宿主图像和水印图像都进行分解.将水印图像的计算结果添加到宿主图像的低频中去
2.从接受到的图像的低阶矩中 减去原始图像的低阶矩,再重建 就得到了水印。
并且文章还证明了 Tchebichef矩比Zernike矩对附加噪声更敏感,随着矩阶的增加,重建误差减小,而加噪误差增大.
文章 Quaternion Zernike moments and their invariants for color image analysis and object recognition
1.引入质心,来抵抗平移攻击