【理论】运筹学入门

此系列作为在职研究生阶段的学习笔记,包括课堂内容,笔记摘录,知乎资料整理,个人感想几个部分。

1.线性规划及标准形式

2.单纯形法的计算

3.对偶问题,知道最优解,求对偶问题的最优解

4.运输问题

5.指派问题和匈牙利法

6.最小生成树和最短路径

运筹学(Operations Research),有几个别名数学规划(math programming)、优化(optimization)、最优化理论。研究min和max的问题,集中在利润最大化、成本最小化。所以做什么事情都会想想我追求的是什么,我最不想要浪费的是什么。

针对实际问题建模

运筹学最关键的问题之一是怎么去针对实际问题建模。那么在建模的时候,首先要确定优化目标,其次,要确定约束条件决策变量

运筹学主要解决的问题

1. 数学规划(能对现实问题的目标和限制进行量化的问题)

2. 博弈论(涉及多方利益的问题)

3. 运输问题(其实属于第一种,不过有自己特殊结构)

4. 库存管理

运筹学的应用

最优路径问题

运筹学的就业


滴滴算法工程师(高精尖高薪)--车辆路径规划及叫车资源匹配和调度;

顺丰、京东物流工程师(高精尖高薪)--仓储问题、快递寄送问题;

投资银行、大型企业工程师--资产配置、成本优化、利润最大化;

国家电网、中石油技术工程师--电力调度、石油管道最优化铺设;

铁路、航空公司--时刻表安排、定价策略、航班安排;

国家铁路局、交通局等公务员--如上;

运筹学与大数据、人工智能的关联

大数据:不妨简单地把大数据理解为变量个数非常大的应用题。那么统计和优化问题,自然而然地属于大数据问题。

关于人工智能,大家可能不知道,当下最热的神经网络、深度学习,其最终的问题,还是落到了解决一个优化问题

神经网络最基础的优化算法--反向传播(BP)算法,可以纳入启发式算法或贪婪算法的行列。而搭建起神经网络的一个个神经元和他们的连线,则是数学建模的过程,用的正是图模型

关于大数据

机器学习,大数据这些新兴专业是随着工业发展,顺应市场需求而来

参考资料

https://zhuanlan.zhihu.com/p/25579864

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容