【Spark Java API】Action(1)—reduce、aggregate

reduce


官方文档描述:

Reduces the elements of this RDD using the specified commutative and associative binary operator.

函数原型:

def reduce(f: JFunction2[T, T, T]): T

根据映射函数f,对RDD中的元素进行二元计算(满足交换律和结合律),返回计算结果。

源码分析:

def reduce(f: (T, T) => T): T = withScope {  
  val cleanF = sc.clean(f)  
  val reducePartition: Iterator[T] => Option[T] = iter => {    
    if (iter.hasNext) {      
        Some(iter.reduceLeft(cleanF))    
    } else {      
        None    
    }  
  }  
  var jobResult: Option[T] = None  
  val mergeResult = (index: Int, taskResult: Option[T]) => {    
      if (taskResult.isDefined) {      
        jobResult = jobResult match {        
          case Some(value) => Some(f(value, taskResult.get))        
          case None => taskResult      
        }    
      }  
   }  
   sc.runJob(this, reducePartition, mergeResult)  
  // Get the final result out of our Option, or throw an exception if the RDD was empty  
  jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}

从源码中可以看出,reduce函数相当于对RDD中的元素进行reduceLeft函数操作,reduceLeft函数是从列表的左边往右边应用reduce函数;之后,在driver端对结果进行合并处理,因此,如果分区数量过多或者自定义函数过于复杂,对driver端的负载比较重。

实例:

JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);

JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,3);

Integer reduceRDD = javaRDD.reduce(new Function2<Integer, Integer, Integer>() {    
  @Override    
  public Integer call(Integer v1, Integer v2) throws Exception {        
      return v1 + v2;    
  }
});
System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" + reduceRDD);

aggregate


官方文档描述:

Aggregate the elements of each partition, and then the results for all the partitions, 
using given combine functions and a neutral "zero value". This function can return a different result type, U, 
than the type of this RDD, T. Thus, we need one operation for merging a T into an U and one operation for merging two U's, 
as in scala.TraversableOnce. Both of these functions are allowed to modify and return their first argument 
instead of creating a new U to avoid memory allocation.

函数原型:

def aggregate[U](zeroValue: U)(seqOp: JFunction2[U, T, U],  combOp: JFunction2[U, U, U]): U

aggregate合并每个区分的每个元素,然后在对分区结果进行merge处理,这个函数最终返回的类型不需要和RDD中元素类型一致。

源码分析:

def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {  
  // Clone the zero value since we will also be serializing it as part of tasks  
  var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())  
  val cleanSeqOp = sc.clean(seqOp)  
  val cleanCombOp = sc.clean(combOp)  
  val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)  
  val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)  
  sc.runJob(this, aggregatePartition, mergeResult)  
  jobResult
}

从源码中可以看出,aggregate函数针对每个分区利用scala集合操作aggregate,再使用comb()将之前每个分区结果聚合。

实例:

JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,3);
Integer aggregateRDD = javaRDD.aggregate(2, new Function2<Integer, Integer, Integer>() {    
    @Override    
    public Integer call(Integer v1, Integer v2) throws Exception {        
        return v1 + v2;    
    }
}, new Function2<Integer, Integer, Integer>() {    
    @Override    
    public Integer call(Integer v1, Integer v2) throws Exception {          
        return v1 + v2;    
    }
});
System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" + aggregateRDD);
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容