Numpy模块的介绍

import numpy as np

np.array([1,2,3])
array([1, 2, 3])
np.array([[1,2,3],[4,5,6]])
array([[1, 2, 3],
       [4, 5, 6]])
arr = np.array([[1,2,3],[4,5,6],[7,8,9]])
arr
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

把它给看成一个矩阵,或者看成一个ndarray数组的话,我们去获取他的形状.

arr = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
arr.shape
(4, 3)
arr.shape[0]
print(arr.shape[0])
20
arr.shape[1]
3

切割矩阵

arr = np.array([1,2,3])
arr
arr[:]
array([1, 2, 3])
arr = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
arr
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])
arr[:,:]
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])
arr[1:2,:]
array([[4, 5, 6]])
arr[1:2,1:2]
array([[5]])
arr[1:2,1:10000]
array([[5, 6]])
arr[1:2,[1,2]]
array([[5, 6]])
arr[1:2,(1,2)]
array([[5, 6]])

矩阵元素的替换

arr = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
arr
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])
l = [4,5,6]
l[1] = 0
l
[4, 0, 6]
# arr[1:2,:] = 0
# arr
arr1 = arr.copy()
arr1[1:2,:] = 0
arr1
array([[ 1,  2,  3],
       [ 0,  0,  0],
       [ 7,  8,  9],
       [10, 11, 12]])
arr
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])
arr[(1,),(1,)] = 0
arr
array([[ 1,  2,  3],
       [ 4,  0,  6],
       [ 7,  8,  9],
       [10, 11, 12]])

矩阵的合并

l1 = [1,2,3]
l2 = [4,5,6]
# l1.extend(l2)
# l1
l1+l2
[1, 2, 3, 4, 5, 6]
arr1 = np.array([[1, 2], [3, 4], [5, 6]])
arr1
array([[1, 2],
       [3, 4],
       [5, 6]])
arr2 = np.array([[7, 8,8], [9, 10,9], [11, 12,10]])
arr2
array([[ 7,  8,  8],
       [ 9, 10,  9],
       [11, 12, 10]])
np.hstack((arr1,arr2)) # h=horizontal水平的
array([[ 1,  2,  7,  8,  8],
       [ 3,  4,  9, 10,  9],
       [ 5,  6, 11, 12, 10]])
np.hstack([arr1,arr2])
array([[ 1,  2,  7,  8,  8],
       [ 3,  4,  9, 10,  9],
       [ 5,  6, 11, 12, 10]])
np.vstack((arr1,arr2)) # v=vertical垂直的
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-53-4122b6300983> in <module>
----> 1 np.vstack((arr1,arr2)) # v=vertical垂直的


d:\python36\lib\site-packages\numpy\core\shape_base.py in vstack(tup)
    281     """
    282     _warn_for_nonsequence(tup)
--> 283     return _nx.concatenate([atleast_2d(_m) for _m in tup], 0)
    284 
    285 


ValueError: all the input array dimensions except for the concatenation axis must match exactly
arr1 = np.array([[1, 2,3], [3, 4,4], [5, 6,4]])
arr1
array([[1, 2, 3],
       [3, 4, 4],
       [5, 6, 4]])
arr2 = np.array([[7, 8,8], [9, 10,9], [11, 12,10]])
arr2
array([[ 7,  8,  8],
       [ 9, 10,  9],
       [11, 12, 10]])
np.vstack((arr1,arr2)) # v=vertical垂直的
array([[ 1,  2,  3],
       [ 3,  4,  4],
       [ 5,  6,  4],
       [ 7,  8,  8],
       [ 9, 10,  9],
       [11, 12, 10]])

通过函数创建矩阵

range(10)
range(0, 10)
list(range(5,10,2))
[5, 7, 9]
np.arange(10,20,2)
array([10, 12, 14, 16, 18])
# 取头也取尾
arr = np.linspace(1,10,20)
arr
array([ 1.        ,  1.47368421,  1.94736842,  2.42105263,  2.89473684,
        3.36842105,  3.84210526,  4.31578947,  4.78947368,  5.26315789,
        5.73684211,  6.21052632,  6.68421053,  7.15789474,  7.63157895,
        8.10526316,  8.57894737,  9.05263158,  9.52631579, 10.        ])
len(arr)
20

zeros/ones/empty

np.zeros((3,2)) # zeros零
array([[0., 0.],
       [0., 0.],
       [0., 0.]])
np.ones((3,2)) # ones一
array([[1., 1.],
       [1., 1.],
       [1., 1.]])
np.empty((3,3)) # 随机元素的矩阵
array([[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
       [0.00000000e+000, 0.00000000e+000, 7.37145944e-321],
       [8.70018274e-313, 2.22507386e-306, 3.91786943e-317]])
np.eye(4) # I=1
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])
np.eye(7)
array([[1., 0., 0., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0., 0.],
       [0., 0., 1., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 1., 0., 0.],
       [0., 0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 0., 0., 1.]])

矩阵的运算

列表无法进行+-*/运算,但是矩阵是可以的.

l1 =[1,3,4]
l1*2
[1, 3, 4, 1, 3, 4]
l1+l1
[1, 3, 4, 1, 3, 4]
arr2 = np.array([[7, 8,8], [9, 10,9], [11, 12,10]])
arr2
array([[ 7,  8,  8],
       [ 9, 10,  9],
       [11, 12, 10]])
arr2*2
array([[14, 16, 16],
       [18, 20, 18],
       [22, 24, 20]])
arr2/2
array([[3.5, 4. , 4. ],
       [4.5, 5. , 4.5],
       [5.5, 6. , 5. ]])
arr2%2
array([[1, 0, 0],
       [1, 0, 1],
       [1, 0, 0]], dtype=int32)
np.sin(arr2)
array([[ 0.6569866 ,  0.98935825,  0.98935825],
       [ 0.41211849, -0.54402111,  0.41211849],
       [-0.99999021, -0.53657292, -0.54402111]])
矩阵函数 详解
np.sin(arr) 对矩阵arr中每个元素取正弦,sin(x)
np.cos(arr) 对矩阵arr中每个元素取余弦,cos(x)
np.tan(arr) 对矩阵arr中每个元素取正切,tan(x)
np.arcsin(arr) 对矩阵arr中每个元素取反正弦,arcsin(x)
np.arccos(arr) 对矩阵arr中每个元素取反余弦,arccos(x)
np.arctan(arr) 对矩阵arr中每个元素取反正切,arctan(x)
np.exp(arr) 对矩阵arr中每个元素取指数函数,e^x
np.sqrt(arr) 对矩阵arr中每个元素开根号\sqrt{x}
np.sqrt(arr2)
array([[2.64575131, 2.82842712, 2.82842712],
       [3.        , 3.16227766, 3.        ],
       [3.31662479, 3.46410162, 3.16227766]])

矩阵的点乘

arr1 = np.array([[1, 2,3], [3, 4,4], [5, 6,4]])
arr1
array([[1, 2, 3],
       [3, 4, 4],
       [5, 6, 4]])
arr2 = np.array([[1, 2,3], [3, 4,4], [5, 6,4]])
arr2
array([[1, 2, 3],
       [3, 4, 4],
       [5, 6, 4]])
arr1.dot(arr2)
array([[22, 28, 23],
       [35, 46, 41],
       [43, 58, 55]])

矩阵的转置

arr2 = np.array([[1, 2,3]])
arr2
array([[1, 2, 3]])
arr2.T
array([[1],
       [2],
       [3]])

矩阵的逆

AA^{-1}=I=A^{-1}A

arr2 = np.array([[1, 2,3],[4,5,6],[7,8,9]])
arr2
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
np.linalg.inv(arr2)
---------------------------------------------------------------------------

LinAlgError                               Traceback (most recent call last)

<ipython-input-104-12b0a2fff5c3> in <module>
----> 1 np.linalg.inv(arr2)


d:\python36\lib\site-packages\numpy\linalg\linalg.py in inv(a)
    549     signature = 'D->D' if isComplexType(t) else 'd->d'
    550     extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
--> 551     ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
    552     return wrap(ainv.astype(result_t, copy=False))
    553 


d:\python36\lib\site-packages\numpy\linalg\linalg.py in _raise_linalgerror_singular(err, flag)
     95 
     96 def _raise_linalgerror_singular(err, flag):
---> 97     raise LinAlgError("Singular matrix")
     98 
     99 def _raise_linalgerror_nonposdef(err, flag):


LinAlgError: Singular matrix

其他的用法

arr2 = np.array([[1, 2,3],[4,5,6],[7,8,9]])
arr2
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
arr2.min()
1
arr2.max()
9
arr2.mean()
5.0
arr2.var()
6.666666666666667
函数名称 函数功能 参数说明
rand(d_0, d_1, \cdots , d_n) 产生均匀分布的随机数 d_n为第n维数据的维度
randn(d_0, d_1, \cdots , d_n) 产生标准正态分布随机数 d_n为第n维数据的维度
randint(low[, high, size, dtype]) 产生随机整数 low:最小值;high:最大值;size:数据个数
random_sample([size]) 在$[0,1)$内产生随机数 size为随机数的shape,可以为元祖或者列表
choice(a[, size]) 从arr中随机选择指定数据 arr为1维数组;size为数据形状
np.random.randint(1,10,(3,3))
array([[8, 5, 6],
       [7, 5, 3],
       [6, 4, 6]])
np.random.randn(3,2)
array([[ 1.49020068e+00, -5.66224782e-01],
       [-1.26022246e+00,  1.41537705e+00],
       [-1.99081209e-03,  2.05245204e+00]])

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容

  • 基础篇NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(...
    oyan99阅读 5,122评论 0 18
  • 前言 numpy是支持 Python语言的数值计算扩充库,其拥有强大的高维度数组处理与矩阵运算能力。除此之外,nu...
    TensorFlow开发者阅读 3,210评论 0 35
  • 先决条件 在阅读这个教程之前,你多少需要知道点python。如果你想从新回忆下,请看看Python Tutoria...
    舒map阅读 2,573评论 1 13
  • 介绍 NumPy 是一个 Python 包。 它代表 “Numeric Python”。 它是一个由多维数组对象和...
    喔蕾喔蕾喔蕾蕾蕾阅读 1,771评论 0 5
  • NumPy是Python中关于科学计算的一个类库,在这里简单介绍一下。 来源:https://docs.scipy...
    灰太狼_black阅读 1,228评论 0 5