spark sql 在mysql的应用实践

前言

目前spark sql 主要应用在structure streaming、etl 和 machine learning 的场景上, 它能对结构化的数据进行存储和操作,结构化的数据可以来自HIve、JSON、Parquet、JDBC/ODBC等数据源。由于部门对数据的准确性,一致性和维护等等要求等业务特点,我们选择mysql使用jdbc的方式作为我们的数据源,spark 集群用yarn做为资源管理,本文主要分享我们在使用spark sql 过程中遇到的问题和一些常用的开发实践总结。

运行环境:spark :2.1.0,hadoop: hadoop-2.5.0-cdh5.3.2 (yarn 资源管理,hdfs),mysql:5.7 ,scala: 2.11, java:1.8


spark on yarn

spark on yarn 运行机制

我们先来了解一下spark on yarn 任务的运行机制。yarn 的基本思想是将JobTracker的两个主要功能(资源管理和任务调度/监控)分离成单独的组件:RM 和 AM;新的资源管理器ResourceManager(RM)实现全局的所有应用的计算资源分配,应用控制器ApplicationMaster(AM)实现应用的调度和资源的协调;节点管理器NodeManager(NM)则是每台机器的代理,处理来自AM的命令,实现节点的监控与报告;容器 Container 封装了内存、CPU、磁盘、网络等资源,是资源隔离的基础,当AM向RM申请资源时,RM为AM返回的资源便是以Container表示,如上图,spark master分配的 executor 的执行环境便是containner。目前我们使用yarn 队列的方式,可以进一步的对应用执行进行管理,让我们的应用分组和任务分配更加清晰和方便管理。

yarn 队列

开发实践

1. 读取mysql表数据

import com.test.spark.db.ConnectionInfos;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

import java.util.Arrays;

public class SparkSimple01 {

    public static void main(String[] args) {

        // 创建spark会话,实质上是SQLContext和HiveContext的组合
        SparkSession sparkSession = SparkSession.builder().master("local[*]").appName("Java Spark SQL basic example").getOrCreate();

        // 设置日志级别,默认会打印DAG,TASK执行日志,设置为WARN之后可以只关注应用相关日志
        sparkSession.sparkContext().setLogLevel("WARN");

        // 分区方式读取mysql表数据
        Dataset<Row> predicateSet = sparkSession.read().jdbc(ConnectionInfos.TEST_MYSQL_CONNECTION_URL, "people",
                (String[]) Arrays.asList(" name = 'tom'", " name = 'sam' ").toArray(), ConnectionInfos.getTestUserAndPasswordProperties());

        predicateSet.show();

    }
}

为了确认该查询对mysql发出的具体sql,我们先查看一下mysql执行sql日志,

#mysql 命令窗口执行以下命令打开日志记录
SHOW VARIABLES LIKE "general_log%";
SET GLOBAL general_log = 'ON';
mysql log.png

打开Lenovo.log得到以上代码在mysql上的执行情况:


分区执行sql

通过分区查询获取表数据的方式有以下几个优点:

  • 利用表索引查询提高查询效率
  • 自定义sql条件使分区数据更加均匀,方便后面的并行计算
  • 分区并发读取可以通过控制并发控制对mysql的查询压力
  • 可以读取大数据量的mysql表

spark jdbc 读取msyql表还有直接读取(无法读取大数据量表),指定字段分区读取(分区不够均匀)等方式,通过项目实践总结,以上的分区读取方式是我们目前认为对mysql最友好的方式。
分库分表的系统也可以利用这种方式读取各个表在内存中union所有spark view得到一张统一的内存表,在业务操作中将分库分表透明化。如果线上数据表数据量较大的时候,在union之前就需要将spark view通过指定字段的方式查询,避免on line ddl 在做变更时union表报错,因为可能存在部分表已经添加新字段,部分表还未加上新字段,而union要求所有表的表结构一致,导致报错。

2. Dataset 分区数据查看

我们都知道 Dataset 的分区是否均匀,对于结果集的并行处理效果有很重要的作用,spark Java版暂时无法查看partition分区中的数据分布,这里用java调用scala 版api方式查看,线上不推荐使用,因为这里的分区查看使用foreachPartition,多了一次action操作,并且打印出全部数据。

import org.apache.spark.sql.{Dataset, Row}

/**
  * Created by lesly.lai on 2017/12/25.
  */
class SparkRddTaskInfo {
  def getTask(dataSet: Dataset[Row]) {
    val size = dataSet.rdd.partitions.length
    println(s"==> partition size: $size " )
    import scala.collection.Iterator
    val showElements = (it: Iterator[Row]) => {
      val ns = it.toSeq
      import org.apache.spark.TaskContext
      val pid = TaskContext.get.partitionId
      println(s"[partition: $pid][size: ${ns.size}] ${ns.mkString(" ")}")
    }
    dataSet.foreachPartition(showElements)
  }
}

还是用上面读取mysql数据的例子来演示调用,将predicateSet作为参数传入

new SparkRddTaskInfo().getTask(predicateSet);

控制台打印结果


分区结果.png

通过分区数据,我们可以看到之前的predicate 方式得到的分区数就是predicate size 大小,并且按照我们想要的数据分区方式分布数据,这对于业务数据的批处理,executor的local cache,spark job执行参数调优都很有帮助,例如调整spark.executor.cores,spark.executor.memory,GC方式等等。
这里涉及java和Scala容器转换的问题,Scala和Java容器库有很多相似点,例如,他们都包含迭代器、可迭代结构、集合、 映射和序列。但是他们有一个重要的区别。Scala的容器库特别强调不可变性,因此提供了大量的新方法将一个容器变换成一个新的容器。
在Scala内部,这些转换是通过一系列“包装”对象完成的,这些对象会将相应的方法调用转发至底层的容器对象。所以容器不会在Java和Scala之间拷贝来拷贝去。一个值得注意的特性是,如果你将一个Java容器转换成其对应的Scala容器,然后再将其转换回同样的Java容器,最终得到的是一个和一开始完全相同的容器对象(这里的相同意味着这两个对象实际上是指向同一片内存区域的引用,容器转换过程中没有任何的拷贝发生)。

3. sql 自定义函数

自定义函数,可以简单方便的实现业务逻辑。

import com.tes.spark.db.ConnectionInfos;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;

public class SparkSimple02 {
    public static void main(String[] args) {
        SparkSession sparkSession = SparkSession.builder().master("local[*]").appName("Java Spark SQL basic example").getOrCreate();
        sparkSession.sparkContext().setLogLevel("WARN");
        Dataset<Row> originSet = sparkSession.read().jdbc(ConnectionInfos.TEST_MYSQL_CONNECTION_URL, "people", ConnectionInfos.getTestUserAndPasswordProperties());
        originSet.cache().createOrReplaceTempView("people");

        // action操作 打印原始结果集
        originSet.show();

        // 注册自定义函数
        sparkSession.sqlContext().udf().register("genderUdf", gender -> {
            if("M".equals(gender)){
                return  "男";
            }else if("F".equals(gender)){
                return  "女";
            }
            return "未知";
        }, DataTypes.StringType);

        // 查询结果
        Dataset<Row> peopleDs = sparkSession.sql("select job_number,name,age, genderUdf(gender) gender, dept_id, salary, create_time from people ");

        // action操作 打印函数处理后结果集
        peopleDs.show();
    }
}

执行结果:


image.png

在sql中用使用java代码实现逻辑操作,这为sql的处理逻辑能力提升了好几个层次,将函数抽取成接口实现类可以方便的管理和维护这类自定义函数类。此外,spark也支持自定义内聚函数,窗口函数等等方式,相比传统开发实现的功能方式,使用spark sql开发效率可以明显提高。

4. mysql 查询连接复用

最近线上任务遇到一个获取mysql connection blocked的问题,从spark ui的executor thread dump 可以看到blocked的栈信息,如图:


connection blocked.png

查看代码发现DBConnectionManager 调用了 spark driver注册mysql driver 使用同步方式的代码


driverRegister.png

看到这里我们很容易觉得是注册driver 导致的blocked,其实再仔细看回报错栈信息,我们会发现,这里的getConnection是在dataset 的foreachpartition 中调用,并且是在每次db 操作时获取一次getConnection 操作,这意味着在该分区下有多次重复的在同步方法中注册driver获取连接的操作,看到这里线程blocked的原因就很明显了,这里我们的解决方式是:
a. 在同个partition中的connection 复用进行db操作
b. 为了避免partition数据分布不均导致连接active时间过长,加上定时释放连接再从连接池重新获取连接操作
通过以上的连接处理,解决了blocked问题,tps也达到了4w左右。

5. executor 并发控制

我们都知道,利用spark 集群分区并行能力,可以很容易实现较高的并发处理能力,如果是并发的批处理,那并行处理的能力可以更好,但是,mysql 在面对这么高的并发的时候,是有点吃不消的,因此我们需要适当降低spark 应用的并发和上下游系统和平相处。控制spark job并发可以通过很多参数配置组合、集群资源、yarn队列限制等方式实现,经过实践,我们选择以下参数实现:

#需要关闭动态内存分配,其他配置才生效
spark.dynamicAllocation.enabled = false
spark.executor.instances = 2
spark.executor.cores = 2
image.png

这里发现除了设置executor配置之外,还需要关闭spark的动态executor分配机制,spark 的ExecutorAllocationManager 是 一个根据工作负载动态分配和删除 executors 的管家, ExecutorAllocationManager 维持一个动态调整的目标executors数目, 并且定期同步到资源管理者,也就是 yarn ,启动的时候根据配置设置一个目标executors数目, spark 运行过程中会根据等待(pending)和正在运行(running)的tasks数目动态调整目标executors数目,因此需要关闭动态配置资源才能达到控制并发的效果。

除了executor是动态分配之外,Spark 1.6 之后引入的统一内存管理机制,与静态内存管理的区别在于存储内存和执行内存共享同一块空间,可以动态占用对方的空闲区域,我们先看看worker中的内存规划是怎样的:


worker memory schedule.png

worker 可以根据实例配置,内存配置,cores配置动态生成executor数量,每一个executor为一个jvm进程,因此executor 的内存管理是建立在jvm的内存管理之上的。从本文第一张spark on yarn图片可以看到,yarn模式的 executor 是在yarn container 中运行,因此container的内存分配大小同样可以控制executor的数量。
RDD 的每个 Partition 经过处理后唯一对应一个 Block(BlockId 的格式为 rdd_RDD-ID_PARTITION-ID ),从上图可以看出,开发过程中常用的分区(partition)数据是以block的方式存储在堆内的storage内存区域的,还有为了减少网络io而做的broadcast数据也存储在storage区域;堆内的另一个区域内存则主要用于缓存rdd shuffle产生的中间数据;此外,worker 中的多个executor还共享同一个节点上的堆外内存,这部分内存主要存储经序列化后的二进制数据,使用的是系统的内存,可以减少不必要的开销以及频繁的GC扫描和回收。

为了更好的理解executor的内存分配,我们再来看一下executor各个内存块的参数设置:


executor jvm

off-heap.png

了解spark 内存管理的机制后,就可以根据mysql的处理能力来设置executor的并发处理能力,让我们的spark 应用处理能力收放自如。调整executor数量还有另外一个好处,就是集群资源规划,目前我们的集群队列是yarn fair 模式,


yarn fair 集群模式.png

先看看yarn fair模式,举个例子,假设有两个用户A和B,他们分别拥有一个队列。当A启动一个job而B没有任务时,A会获得全部集群资源;当B启动一个job后,A的job会继续运行,当A的job执行完释放资源后,不过一会儿之后两个任务会各自获得一半的集群资源。如果此时B再启动第二个job并且其它job还在运行,则它将会和B的第一个job共享B这个队列的资源,也就是B的两个job会用于四分之一的集群资源,而A的job仍然用于集群一半的资源,结果就是资源最终在两个用户之间平等的共享。

在这种情况下,即使有多个队列执行任务,fair模式容易在资源空闲时占用其他队列资源,一旦占用时间过长,就会导致其他任务都卡住,这也是我们遇到的实际问题。如果我们在一开始能评估任务所用的资源,就可以在yarn队列的基础上指定应用的资源,例如executor的内存,cpu,实例个数,并行task数量等等参数来管理集群资源,这有点类似于yarn Capacity Scheduler 队列模式,但又比它有优势,因为spark 应用可以通过spark context的配置来动态的设置,不用在配置yarn 队列后重启集群,稍微灵活了一点。

除了以上提到的几点总结,我们还遇到很多其他的疑问和实践,例如,什么时候出现shuffle;如何比较好避开或者利用shuffle;Dataset 的cache操作会不会有性能问题,如何从spark ui中分析定位问题;spark 任务异常处理等等,暂时到这里,待续...

赖泽坤 @vip.fcs

参考资料:
http://www.cnblogs.com/yangsy0915/p/5118100.html
https://mp.weixin.qq.com/s/KhHy1mURJBiPMGqkl4-JEw
https://www.ibm.com/developerworks/cn/analytics/library/ba-cn-apache-spark-memory-management/index.html?ca=drs-&utm_source=tuicool&utm_medium=referral
https://docs.scala-lang.org/zh-cn/overviews/collections/conversions-between-java-and-scala-collections.html
https://www.jianshu.com/p/e7db5970e68c

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351