机器学习10 Bagging and Boosting

这一篇, 我们希望提升模型的性能, 除了更多的数据,更好的EDA等,集成学习可以从模型的角度提升模型的学习性能, 即将基模型组合成一个大模型。 在介绍集成学习前, 我们先介绍一下Bagging和Boosting的概念。

Bagging:

给定包含m个样本的数据集。每轮从样本中使用Bootstrap sampling(自助采样)的方法抽取m个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中, 即)。可以进行T轮采样,从而可以学习到T个基模型。然后再将T个基模型进行结合。

对分类问题:将上步得到的T个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)

Boosting:

先从初始训练集训练出一个基模型,接下来的基模型,会根据之前的模型的学习效果, 相应的修改样本分布,对先前模型学习错误的样本赋予更大的权重。


接下来,想讲一下为什么bagging和boosting可以提升模型的性能。

可以看出,bagging中每个模型基于随机采样的样本,模型相关性比较小, 而boosting,每个模型之间的相关性很强,因为每一个基模型,都和之前的基模型的学习结果相关。

我们再回到方差与偏差的角度:

bagging主要解决的是方差问题, 随着基模型的数量提升,融合模型的方差越来越小,偏差不会有太大的提升,因此基模型不能太弱了,不然融合模型的偏差会比较大。

boosting主要解决的是偏差的问题,随着基模型数量提升,偏差越来越小,但对方差影响较小。因此基模型不能太强,不然会有方差较大的问题,即过拟合。

接下来简单介绍一下Bagging中的典型算法, Random Forest(随机森林)

随机森林以决策树为基模型,构建在Bagging基础上。RF不仅在样本上进行了随机采样, 在属性上也进行了随机采样,每个节点都从所有特征中选择k个特征,在这k个特征中寻找合适的切分特征与切分点,从而进一步降低过拟合。一般情况下, k = log_2d, d是所有特征的个数。因此RF中,基模型的相关性进一步降低了,更好的提升了泛化能力。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351