看到一篇介绍python实现fibonacci的计算方式,觉得甚是有趣,相信绝大多数人最初开始学习编程的时候,都是用的递归实现,即以下的示例2;然后了解掌握记忆术,即示例4和5,python中的记忆术可以用装饰器实现,或者functools里面的lru_cache函数实现;然后才是动态规划的示例1;学习到了Python之后,才知道可以用生成器实现,即示例3。
第六个使用标准库的方法是我自己加的,这个方法要注意使用,可能会有缓存保存,如果有必要需要清除。
## Example 1: Using looping technique
def fib(n):
a,b = 1,1
for i in range(n-1):
a,b = b,a+b
return a
print fib(5)
## Example 2: Using recursion
def fibR(n):
if n==1 or n==2:
return 1
return fibR(n-1)+fibR(n-2)
print fibR(5)
## Example 3: Using generators
a,b = 0,1
def fibI():
global a,b
while True:
a,b = b, a+b
yield a
f=fibI()
f.next()
f.next()
f.next()
f.next()
print f.next()
## Example 4: Using memoization
def memoize(fn, arg):
memo = {}
if arg not in memo:
memo[arg] = fn(arg)
return memo[arg]
## fib() as written in example 1.
fibm = memoize(fib,5)
print fibm
## Example 5: Using memoization as decorator
class Memoize:
def __init__(self, fn):
self.fn = fn
self.memo = {}
def __call__(self, arg):
if arg not in self.memo:
self.memo[arg] = self.fn(arg)
return self.memo[arg]
@Memoize
def fib(n):
a,b = 1,1
for i in range(n-1):
a,b = b,a+b
return a
print fib(5)
# Example6: using functools's lru_cache
from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
if n < 2:
return n
else:
return fib(n-1) + fib(n-2)
下面是对于以上算法的总结:
https://technobeans.com/2012/04/19/5-ways-of-fibonacci-in-python-best-way/