Task1 赛题理解
本章将会对新闻文本分类进行赛题讲解,对赛题数据进行说明,并给出解题思路。
赛题理解
- 赛题名称:零基础入门NLP之新闻文本分类
- 赛题目标:通过这道赛题可以引导大家走入自然语言处理的世界, 带大家接触NLP的以下知识点。
- 预处理
- 模型构建
- 模型训练
- 后处理
- 赛题背景:
本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事第三场 —— 零基础入门NLP之新闻文本分类挑战赛。
赛题以自然语言处理为背景,要求选手根据新闻文本字符对新闻的类别进行分类,这是一个经典文本分类问题。通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。
为更好的引导大家入门,我们同时为本赛题定制了系列学习方案,其中包括数据科学库、通用流程和baseline方案学习三部分。通过对本方案的完整学习,可以帮助掌握数据竞赛基本技能。同时我们也将提供专属的视频直播学习通道。 - 赛题任务:要求选手对新闻文本进行分类,这是一个典型的字符识别问题。
学习目标
- 理解赛题背景与赛题数据
- 完成赛题报名和数据下载,理解赛题的解题思路
->零基础入门NLP - 新闻文本分类
赛题数据
赛题数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。
整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。
赛题数据由以下几个部分构成:
- 训练集20w条样本
- 测试集A包括5w条样本
- 测试集B包括5w条样本。
为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。
数据标签
处理后的赛题训练数据如下:
lablel | text |
---|---|
6 | 57 44 66 56 2 3 3 37 5 41 9 57 44 47 45 33 13 63 58 31 17 47 0 1 1 69 26 60 62 15 21 12 49 18 38 20 50 23 57 44 45 33 25 28 47 22 52 35 30 14 24 69 54 7 48 19 11 51 16 43 26 34 53 27 64 8 4 42 36 46 65 69 29 39 15 37 57 44 45 33 69 54 7 25 40 35 30 66 56 47 55 69 61 10 60 42 36 46 65 37 5 41 32 67 6 59 47 0 1 1 68 |
在数据集中标签的对应的关系如下:{'科技': 0, '股票': 1, '体育': 2, '娱乐': 3, '时政': 4, '社会': 5, '教育': 6, '财经': 7, '家居': 8, '游戏': 9, '房产': 10, '时尚': 11, '彩票': 12, '星座': 13}
评测指标
评价标准为类别f1_score的均值,选手提交结果与实际测试集的类别进行对比,结果越大越好。
数据读取
使用Pandas库完成数据读取操作,并对赛题数据进行分析。
解题思路
赛题思路分析:赛题本质是一个文本分类问题,需要根据每句的字符进行分类。但赛题给出的数据是匿名化的,不能直接使用中文分词等操作,这个是赛题的难点。
因此本次赛题的难点是需要对匿名字符进行建模,进而完成文本分类的过程。由于文本数据是一种典型的非结构化数据,因此可能涉及到特征提取和分类模型两个部分。为了减低参赛难度,我们提供了一些解题思路供大家参考:
思路1:TF-IDF + 机器学习分类器
直接使用TF-IDF对文本提取特征,并使用分类器进行分类。在分类器的选择上,可以使用SVM、LR、或者XGBoost。思路2:FastText
FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建出分类器。思路3:WordVec + 深度学习分类器
WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRNN或者BiLSTM。思路4:Bert词向量
Bert是高配款的词向量,具有强大的建模学习能力。