sklearn调包侠之KNN算法

天下武功,唯快不破。今天就正式讲解如何通过《sklearn小抄》武林秘籍,成为一代宗师调包侠。欲练此功,必先自宫;就算自宫,未必成功;若不自宫,也能成功。传说江湖(机器学习领域)有两大派别:一是学术派,该派资历高,家境好,多为名门世家(学历高,数学好),重基础(数学推导和理论知识);一是实践派,以找人切磋为主(实践为主),多在切磋中提升能力。《机器学习实战》系列为学术派,《sklearn调包侠》系列为实践派,该系列会简单讲解原理,多引用于《机器学习实战》系列的算法讲解(必要的内力),然后在实操中完成各机器学习算法。
tips:在本篇中会按小抄详细过一遍,之后就可能会随意一些。

KNN算法原理

计算测试样本与每个训练样本的距离,取前k个距离最小的训练样本,最后选择这k个样本中出现最多的分类,作为测试样本的分类。
如图所示,绿色的为测试样本,当k取3时,该样本就属于红色类;当k取5时,就属于蓝色类了。所以k值的选择很大程度影响着该算法的结果,通常k的取值不大于20。

KNN算法原理

实战——糖尿病预测

数据导入

本数据可在kaggle中进行下载,读者可以去我的百度云链接进行下载。
(链接:https://pan.baidu.com/s/1gqaGuQ9kWZFfc-SXbYFDkA 密码:lxfx)
该数据为csv格式文件,我们通过pandas读入:

import numpy as np
import pandas as pd

data = pd.read_csv('data/pima-indians-diabetes/diabetes.csv')
data.head()

我们简单看下各字段的意思:

  • Pregnancies:怀孕的次数
  • Glucose:血浆葡萄糖浓度
  • BloodPressure:舒张压
  • SkinThickness:肱三头肌皮肤皱皱厚度
  • Insulin: 胰岛素
  • BMI:身体质量指数
  • Dia....:糖尿病血统指数
  • Age:年龄
  • Outcone:是否糖尿病,1为是

我们把数据划分为特征和label,前8列为特征,最后一列为label。

X = data.iloc[:, 0:8]
Y = data.iloc[:, 8]
切分数据集

在模型训练前,需要将数据集切分为训练集和测试集(73开或者其它),这里选择82开,使用sklearn中model_selection模块中的train_test_split方法。

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=22)

这里的test_size为测试集的比例,random_state为随机种子,这里可设置任意数字,保证下次运行同样可以选择出对应的训练集和测试集。

数据预处理

这里没有对数据进行预处理。

模型训练与评估

KNN算法使用sklearn.neighbors模块中的KNeighborsClassifier方法。常用的参数如下:

  • n_neighbors,整数,也就是k值。
  • weights,默认为‘uniform’;这个参数可以针对不同的邻居指定不同的权重,也就是说,越近可以权重越高,默认是一样的权重。‘distance’可以设置不同权重。

在sklearn.neighbors还有一个变种KNN算法,为RadiusNeighborsClassifier算法,可以使用一定半径的点来取代距离最近的k个点。
接下来,我们通过设置weight和RadiusNeighborsClassifier,对算法进行比较。

from sklearn.neighbors import KNeighborsClassifier,RadiusNeighborsClassifier

model1 = KNeighborsClassifier(n_neighbors=2)
model1.fit(X_train, Y_train)
score1 = model1.score(X_test, Y_test)

model2 = KNeighborsClassifier(n_neighbors=2, weights='distance')
model2.fit(X_train, Y_train)
score2 = model2.score(X_test, Y_test)

model3 = RadiusNeighborsClassifier(n_neighbors=2, radius=500.0)
model3.fit(X_train, Y_train)
score3 = model3.score(X_test, Y_test)

print(score1, score2, score3)


#result
#0.714285714286 0.701298701299 0.649350649351

可以看出默认情况的KNN算法结果最好。

交叉验证

通过上述结果可以看出:默认情况的KNN算法结果最好。这个判断准确么?答案是不准确,因为我们只是随机分配了一次训练和测试样本,可能下次随机选择训练和测试样本,结果就不一样了。这里的方法为:交叉验证。我们把数据集划分为10折,每次用9折训练,1折测试,就会有10次结果,求十次的平均即可。当然,可以设置cv的值,选择不同的折数。

from sklearn.model_selection import cross_val_score

result1 = cross_val_score(model1, X, Y, cv=10)
result2 = cross_val_score(model2, X, Y, cv=10)
result3 = cross_val_score(model3, X, Y, cv=10)

print(result1.mean(), result2.mean(), result3.mean())

# result
# 0.712235133288 0.67966507177 0.64976076555

可以看出,还是默认情况的KNN算法结果最好。

模型调优

无模型调优。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容