「算法」快速排序 Java 实现

1 前言

吴军《Google 方法论》专栏「计算机算法,谈谈提高效率的本质」文章中提及算法的重要性,未来是人工智能,大数据时代。在计算机使用不同算法运行程序会出现成千上万倍的效率差。

文中提及常用算法 “归并排序”“快速排序”,业余时间一直有翻阅相关文章,但没有自己总结深入了解。

快速排序核心思想:选取一个基准数字,比基准数字小的数字全部放在基准左边,比基准数字大的数字全部放在基准右边,基准依次递归。

2 快速排序原理与Java代码实现

快速排序 是图灵奖得主 C. R. A. Hoare 于 1960 年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)

分治法基本思想:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。

快速排序,利用分治法可以分为三步:

  1. 数据集中选择 一个元素作为 “基准”「pivot」
  2. 所有小于 “基准” 的元素,都移到基准左边;所有大于 “基准” 的元素,都移到基准的右边,这个操作称为分区操作,分区操作结束后,基准元素所处位置就是最终排序的位置。
  3. 对于 “基准” 左边与右边的两个子集,不断重复第一步与第二步,直到所有子集只剩下一个元素为止。

2.1 快速排序动态原理图

快速排序原理图

2.2 快速排序静态原理图

举例来说,现在有一个数据集{85, 24, 63, 45, 17, 31, 96, 50},怎么对其排序呢?

第一步选择中间的元素45作为"基准"。(基准值可以任意选择,但是选择中间的值比较容易理解。)

第二步,按照顺序,将每个元素与"基准"进行比较,形成两个子集,一个"小于45",另一个"大于等于45"。

第三步,对两个子集不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

2.3 Java 伪代码实现


public class Quicksort {
    private static final String TAG = "Quicksort";
    private int[] numbers;
    private int number;

    public void sort(int[] values) {
        // 检查数组是否为空
        if (values == null || values.length == 0) {
            return;
        }
        this.numbers = values;
        number = values.length;
        quicksort(0, number - 1);
        
    }

    private void quicksort(int low, int high) {
        int i = low, j = high;
        // 把数组中间的元素设置为基准数
        int pivot = numbers[low + (high - low) / 2];

        // 分开成两个数组
        while (i <= j) {
            //从左向右“探测”,如果左边的元素小于基准数,则去“探测”下一个元素
            while (numbers[i] < pivot) {
                i++;
            }
            //从右向左“探测”,如果左边的元素大于基准数,则去“探测”下一个元素
            while (numbers[j] > pivot) {
                j--;
            }

            // 如果左边探测结果大于基准数,右边探测结果小于基准数,那么交换这两个元素
            // 然后继续探测
            if (i <= j) {
                exchange(i, j);
                i++;
                j--;
            }
        }
        // 递归
        if (low < j)
            quicksort(low, j);
        if (i < high)
            quicksort(i, high);
    }

    private void exchange(int i, int j) {
        int temp = numbers[i];
        numbers[i] = numbers[j];
        numbers[j] = temp;
    }
}

参考文章


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容