xgboost代价函数里加入正则项,是否优于cart的剪枝”。其实陈天奇大神的slides里面也是有提到的,我当一下搬运工。
决策树的学习过程就是为了找出最优的决策树,然而从函数空间里所有的决策树中找出最优的决策树是NP-C问题,所以常采用启发式(Heuristic)的方法,如CART里面的优化GINI指数、剪枝、控制树的深度。这些启发式方法的背后往往隐含了一个目标函数,这也是大部分人经常忽视掉的。xgboost的目标函数如下:
其中正则项控制着模型的复杂度,包括了叶子节点数目T和leaf score的L2模的平方:
那这个跟剪枝有什么关系呢???
跳过一系列推导,我们直接来看xgboost中树节点分裂时所采用的公式:
这个公式形式上跟ID3算法(采用entropy计算增益) 、CART算法(采用gini指数计算增益) 是一致的,都是用分裂后的某种值 减去 分裂前的某种值,从而得到增益。为了限制树的生长,我们可以加入阈值,当增益大于阈值时才让节点分裂,上式中的gamma即阈值,它是正则项里叶子节点数T的系数,所以xgboost在优化目标函数的同时相当于做了预剪枝。另外,上式中还有一个系数lambda,是正则项里leaf score的L2模平方的系数,对leaf score做了平滑,也起到了防止过拟合的作用,这个是传统GBDT里不具备的特性。