为什么java Hashmap 中的加载因子是默认为0.75

前几天在一个群里看到有人讨论hashmap中的加载因子为什么是默认0.75。

HashMap源码中的加载因子

static final float DEFAULT_LOAD_FACTOR = 0.75f;  

当时想到的是应该是“哈希冲突”和“空间利用率”矛盾的一个折衷。
跟数据结构要么查询快要么插入快一个道理,hashmap就是一个插入慢、查询快的数据结构。

加载因子是表示Hsah表中元素的填满的程度。
加载因子越大,填满的元素越多,空间利用率越高,但冲突的机会加大了。
反之,加载因子越小,填满的元素越少,冲突的机会减小,但空间浪费多了。

冲突的机会越大,则查找的成本越高。反之,查找的成本越小。

因此,必须在 "冲突的机会"与"空间利用率"之间寻找一种平衡与折衷。


但是为什么一定是0.75?而不是0.8,0.6###

本着不嫌事大的精神继续深挖,在此之前先简单补充点本文需要的基础知识:

1.冲突定义:假设哈希表的地址集为[0,n),冲突是指由关键字得到的哈希地址为j(0<=j<=n-1)的位置上已经有记录。在关键字得到的哈希地址上已经有记录,那么就称之为冲突

2.处理冲突:就是为该关键字的记录扎到另一个“空”的哈希地址。即在处理哈希地址的冲突时,若得到的另一个哈希地址H1仍然发生冲突,则再求下一个地址H2,若H2仍然冲突,再求的H3,直至Hk不发生冲突为止,则Hk为记录在表中的地址。


处理冲突的几种方法:#

一、 开放定址法

Hi=(H(key) + di) MOD m i=1,2,...k(k<=m-1)其中H(key)为哈希函数;m为哈希表表长;di为增量序列。

开放定址法根据步长不同可以分为3种:

1)线性探查法(Linear Probing):di=1,2,3,...,m-1
  简单地说就是以当前冲突位置为起点,步长为1循环查找,直到找到一个空的位置就把元素插进去,循环完了都找不到说明容器满了。就像你去一条街上的店里吃饭,问了第一家被告知满座,然后挨着一家家去问是否有位置一样。

2)线性补偿探测法:di=Q 下一个位置满足 Hi=(H(key) + Q) mod m i=1,2,...k(k<=m-1) ,要求 Q 与 m 是互质的,以便能探测到哈希表中的所有单元。
继续用上面的例子,现在你不是挨着一家家去问了,拿出计算器算了一下,然后隔Q家问一次有没有位置。

3)伪随机探测再散列:di=伪随机数序列。还是那个例子,这是完全根据心情去选一家店来问了

缺点:

  • 这种方法建立起来的hash表当冲突多的时候数据容易堆聚在一起,这时候对查找不友好;
  • 删除结点不能简单地将被删结 点的空间置为空,否则将截断在它之后填人散列表的同义词结点的查找路径。因此在 用开放地址法处理冲突的散列表上执行删除操作,只能在被删结点上做删除标记,而不能真正删除结点
  • 当空间满了,还要建立一个溢出表来存多出来的元素。

二、再哈希法

Hi = RHi(key),i=1,2,...k
RHi均是不同的哈希函数,即在同义词产生地址冲突时计算另一个哈希函数地址,直到不发生冲突为止。这种方法不易产生聚集,但是增加了计算时间。

缺点:增加了计算时间。

三、建立一个公共溢出区

假设哈希函数的值域为[0,m-1],则设向量HashTable[0...m-1]为基本表,每个分量存放一个记录,另设立向量OverTable[0....v]为溢出表。所有关键字和基本表中关键字为同义词的记录,不管他们由哈希函数得到的哈希地址是什么,一旦发生冲突,都填入溢出表。

简单地说就是搞个新表存冲突的元素。

四、链地址法(拉链法)

将所有关键字为同义词的记录存储在同一线性链表中,也就是把冲突位置的元素构造成链表。

拉链法的优点:

  • 拉链法处理冲突简单,且无堆积现象,即非同义词决不会发生冲突,因此平均查找长度较短;
  • 由于拉链法中各链表上的结点空间是动态申请的,故它更适合于造表前无法确定表长的情况;
  • 在用拉链法构造的散列表中,删除结点的操作易于实现。只要简单地删去链表上相应的结点即可。

拉链法的缺点:

  • 指针需要额外的空间,故当结点规模较小时,开放定址法较为节省空间,而若将节省的指针空间用来扩大散列表的规模,可使装填因子变小,这又减少了开放定址法中的冲突,从而提高平均查找速度

Java中HashMap的数据结构#

HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

HashMap数据结构,来源于网络

看图就可以知道Java中的hashMap使用了拉链法处理冲突。
HashMap有一个初始容量大小,默认是16

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16  

为了减少冲突的概率,当hashMap的数组长度到了一个临界值就会触发扩容,把所有元素rehash再放到扩容后的容器中,这是一个非常耗时的操作。

而这个临界值由【加载因子】和当前容器的容量大小来确定:DEFAULT_INITIAL_CAPACITY*DEFAULT_LOAD_FACTOR ,即默认情况下是16x0.75=12时,就会触发扩容操作。

所以使用hash容器时尽量预估自己的数据量来设置初始值。具体代码实现自行去研究HashMap的源码。

基础知识补充完毕,回到正题,为什么加载因子要默认是0.75?
从hashmap源码注释里找到了这一段

Ideally, under random hashCodes, the frequency of

  • nodes in bins follows a Poisson distribution
  • (http://en.wikipedia.org/wiki/Poisson_distribution) with a
  • parameter of about 0.5 on average for the default resizing
  • threshold of 0.75, although with a large variance because of
  • resizing granularity. Ignoring variance, the expected
  • occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
  • factorial(k)). The first values are:
  • 0: 0.60653066
  • 1: 0.30326533
  • 2: 0.07581633
  • 3: 0.01263606
  • 4: 0.00157952
  • 5: 0.00015795
  • 6: 0.00001316
  • 7: 0.00000094
  • 8: 0.00000006
  • more: less than 1 in ten million

注意wiki链接中的关键字:Poisson_distribution
泊淞分布啊

简单翻译一下就是在理想情况下,使用随机哈希码,节点出现的频率在hash桶中遵循泊松分布,同时给出了桶中元素个数和概率的对照表。

从上面的表中可以看到当桶中元素到达8个的时候,概率已经变得非常小,也就是说用0.75作为加载因子,每个碰撞位置的链表长度超过8个是几乎不可能的。

好了,再深挖就要挖到统计学那边去了,就此打住,重申一下使用hash容器请尽量指定初始容量,且是2的幂次方。

关于泊淞分布的知识请看

http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html#comment-356111

欢迎讨论,这个周末的任务完成了,可以放心去浪了─=≡Σ((( つ•̀ω•́)つ超人

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容

  • HashMap 是 Java 面试必考的知识点,面试官从这个小知识点就可以了解我们对 Java 基础的掌握程度。网...
    野狗子嗷嗷嗷阅读 6,662评论 9 107
  • Java8张图 11、字符串不变性 12、equals()方法、hashCode()方法的区别 13、...
    Miley_MOJIE阅读 3,697评论 0 11
  • 前言 这次我和大家一起学习HashMap,HashMap我们在工作中经常会使用,而且面试中也很频繁会问到,因为它里...
    liangzzz阅读 7,974评论 7 102
  • 一、基本数据类型 注释 单行注释:// 区域注释:/* */ 文档注释:/** */ 数值 对于byte类型而言...
    龙猫小爷阅读 4,257评论 0 16
  • 小时候,因为家里穷,也比较重男轻女。我便早早地学会了懂事,每次与弟弟发生冲突,母亲总会教训道:你是姐姐,年龄比弟弟...
    风花星月阅读 635评论 3 10