CPU高速缓存行与内存关系 及并发MESI 协议

先来一个整体图:


image.png
一.cpu和内存的关系

大致关系: CPU Cache --> 前端总线 FSB (下图中的Bus) --> Memory 内存

CPU 为了更快的执行代码。于是当从内存中读取数据时,并不是只读自己想要的部分。而是读取足够的字节来填入高速缓存行(缓存预读性原理)。根据不同的 CPU ,高速缓存行大小不同。如 X86 是 32BYTES ,而 ALPHA 是 64BYTES 。并且始终在第 32 个字节或第 64 个字节处对齐(内存对齐)。这样,当 CPU 访问相邻的数据时,就不必每次都从内存中读取,提高了速度。 因为访问内存要比访问高速缓存用的时间多得多。

下面一张图可以看出各级缓存之间的响应时间差距,以及内存到底有多慢!


image.png
二. CPU Cache和Cache Line

什么是Cache Line

Cache Line可以简单的理解为CPU Cache中的最小缓存单位。目前主流的CPU Cache的Cache Line大小都是64Bytes。假设我们有一个512字节的一级缓存,那么按照64B的缓存单位大小来算,这个一级缓存所能存放的缓存个数就是512/64 = 8个。具体参见下图:

image.png

例子:一段逻辑代码,会从命令行接收一个参数作为数组的大小创建一个数量为N的int数组。并依次循环的从这个数组中进行数组内容访问,循环10亿次。最终输出数组总大小和对应总执行时间。

如果我们把这些数据做成折线图后就会发现:总执行时间在数组大小超过64Bytes时有较为明显的拐点。原因是当数组小于64Bytes时数组极有可能落在一条Cache Line内,而一个元素的访问就会使得整条Cache Line被填充,因而使得后面的若干个元素受益于缓存带来的加速。而当数组大于64Bytes时,必然至少需要两条Cache Line,继而在循环访问时会出现两次Cache Line的填充,由于缓存填充的时间远高于数据访问的响应时间,因此多一次缓存填充对于总执行的影响会被放大,最终得到下图的结果:

image.png

我们来看下面这个C语言中常用的循环优化例子
下面两段代码中,第一段代码在C语言中总是比第二段代码的执行速度要快。具体的原因相信你仔细阅读了Cache Line的介绍后就很容易理解了。

for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++) {
        int num;   
        arr[i][j] = num;
    }
}
//在内存中顺序填充数组,会在cpu缓存行中也顺序填充

for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++) {
        int   num;       
        arr[j][i] = num;
    }
}
////在内存中不连续填充,会在多个cpu缓存行中填充

三. 下面看CPU Cache与Memory关系图
image.png

上述左图是最简单的高速缓存的图示,数据的读取和存储都经过高速缓存,CPU核心和高速缓存之间有一条特殊的快速通道,在这个简化的图示上,主存(main memory)与高速缓存(cache)都连在系统总线上。这条总线同时还用于其他组件之间的通信。在高速缓存出现后不久,系统变得更加复杂,高速缓存与主存之间的速度差异被拉大,直到加入了另一级的缓存(由于加大一级缓存的做法从经济上考虑是行不通的,所以有了二级缓存甚至三级缓存)。新加入的这些缓存比第一缓存更大但是更慢。

多核发达的年代。情况就不能那么简单了。试想下面这样一个情况。

1、CPU1 读取了一个字节,以及它和它相邻的字节被读入 CPU1 的高速缓存。
2、CPU2 做了上面同样的工作。这样 CPU1 , CPU2 的高速缓存拥有同样的数据。
3、CPU1 修改了那个字节,被修改后,那个字节被放回 CPU1 的高速缓存行。但是该信息并没有被写入 RAM 。
4、CPU2 访问该字节,但由于 CPU1 并未将数据写入 RAM ,导致了数据不同步。

为了解决这个问题,芯片设计者制定了一个规则。当一个 CPU 修改高速缓存行中的字节时,计算机中的其它 CPU 会被通知,它们的高速缓存将视为无效。于是,在上面的情况下, CPU2 发现自己的高速缓存中数据已无效, CPU1 将立即把自己的数据写回 RAM ,然后 CPU2 重新读取该数据。 可以看出,高速缓存行在多处理器上会导致一些不利。

四. 多核CPU多级缓存一致性协议MESI

多核CPU的情况下有多个一级缓存,如何保证缓存内部数据的一致,不让系统数据混乱。这里就引出了一个一致性的协议MESI。

MESI协议缓存状态

MESI 是指4种状态的首字母。每个Cache line有4个状态,可用2个bit表示,它们分别是:

缓存行(Cache line):缓存存储数据的单元。

image.png

举个栗子来说:

假设cache 1 中有一个变量x = 0的cache line 处于S状态(共享)。
那么其他拥有x变量的cache 2、cache 3等x的cache line调整为S状态(共享)或者调整为 I 状态(无效)。

多核缓存协同操作

假设有三个CPU A、B、C,对应三个缓存分别是cache a、b、 c。在主内存中定义了x的引用值为0。

image.png

单核读取
那么执行流程是:
CPU A发出了一条指令,从主内存中读取x。
从主内存通过bus读取到缓存中(远端读取Remote read),这是该Cache line修改为E状态(独享).

image.png

双核读取
那么执行流程是:
CPU A发出了一条指令,从主内存中读取x。
CPU A从主内存通过bus读取到 cache a中并将该cache line 设置为E状态。
CPU B发出了一条指令,从主内存中读取x。
CPU B试图从主内存中读取x时,CPU A检测到了地址冲突。这时CPU A对相关数据做出响应。此时x 存储于cache a和cache b中,x在chche a和cache b中都被设置为S状态(共享)。

image.png

修改数据
那么执行流程是:
CPU A 计算完成后发指令需要修改x.
CPU A 将x设置为M状态(修改)并通知缓存了x的CPU B, CPU B将本地cache b中的x设置为I状态(无效)
CPU A 对x进行赋值。

image.png

同步数据
那么执行流程是:

CPU B 发出了要读取x的指令。
CPU B 通知CPU A,CPU A将修改后的数据同步到主内存并且cache a 修改为E(独享)
CPU A同步CPU B的x,将cache a和同步后cache b中的x设置为S状态(共享)。

image.png
五. Cache淘汰策略

常见的淘汰策略主要有LRU和Random两种。通常意义下LRU对于Cache的命中率会比Random更好,所以CPU Cache的淘汰策略选择的是LRU。当然也有些实验显示在Cache Size较大的时候Random策略会有更高的命中率。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容