前言
涉及内容较多,很多细节需要进一步探索,希望同学们多多批评指正。
XNU加载app
参考资料:
iOS 系统内核 XNU:App 如何加载?
XNU源码
- fork 新进程
- 为Mach-O分配内存
- 解析Mach-O
- 读取Mach-O 头文件
- 遍历load command信息,将Mach-O映射到内存,设置执行app的入口点。
- 启动dyld
总体来说,XNU加载就是为Mach-O创建一个新进程,建立虚拟内存空间,解析Mach-O文件,最后映射到存空间,设置执行App的入口点。
设置完入口点后会通过 load_dylinker() 函数来解析加载 dyld,然后将入口点地址改成 dyld 的入口地址。这一步完后,内核部分就完成了 Mach-O 文件的加载。剩下的就是用户态层 dyld 加载 App 了
dyld
参考资料:
dyld: Dynamic Linking On OS X
链接器:符号是怎么绑定到地址上的
dyld3-wwdc
iOS应用的启动流程和优化详解
dyld 是英文the dynamic link editor的简写,也就是动态链接器,是苹果操作系统的一个重要组成部分。在iOS/Mac OSX系统中,仅有很少量进程只需要内核就能完成加载,基本上所有的进程都需要动态链接的。
Mach-O镜像文件中会有很多对外部的库和符号的引用,但是这些引用并不能直接用(对于动态库的符号,是undefined),这个填补工作就是由动态链器dyld来完成。
(undefined) external _NSLog (from Foundation)
(undefined) external _OBJC_CLASS_$_NSObject (from CoreFoundation)
概括讲,dyld主要做了下面几件事
1. loading
先执行Mach-O文件,根据Mach-O中的undefined符号加载对应的dylib,系统会设置一个共享缓存来解决加载的递归依赖问题(在load函数有一个算法做相应的事情),把dylib映射到进程内存。
2. linking
- rebase 修复指向当前镜像内部的资源指针
ASLR:是Address Space Layout Randomization(地址空间布局随机化)的简称。App在被启动的时候,程序和dylib会被映射到逻辑地址空间,这个逻辑地址空间有一个起始地址,ASLR技术让这个起始地址是随机的。这个地址如果是固定的,黑客很容易就用起始地址+函数偏移地址找到对应的函数地址。
Code Sign:就是苹果代码加密签名机制,但是在Code Sign操作的时候,加密的哈希不是针对整个文件,而是针对每一个Page的。这个就保证了dyld在加载的时候,可以对每个page进行独立的验证
- bind 将符号绑定到动态库里对应的地址上,bind指向的是镜像外部的资源指针(跨镜像)
3. static initailizers
- 当我们dylib被映射到进程内存,并被链接,就需要对这些资源进行必要的初始化,在iOS系统libsystem,libdispatch,libObjc,这几个库有较高的优先级,会被确保最先被初始化。
- libObjc会向dyld注册回调函数,被加载的库包括我们的主程序 通过回调函数把oc类,符号等内容(比如我们声明的自定义class和selector)交给libObjc库管理。这也是我们下一篇内容要研究的重点。
_dyld_objc_notify_register(&map_images, load_images, unmap_image)
4.skip main
至此,可执行文件和动态库都已被加载到内存,各种资源指针都被修复指向正确的内存地址,必要的初始化完成。dyld跳转到main函数并执行。
dyld代码流程
用模拟跑的,真机流程不一样的
dyldbootstrap::start
uintptr_t start(const dyld3::MachOLoaded* appsMachHeader, int argc, const char* argv[],
const dyld3::MachOLoaded* dyldsMachHeader, uintptr_t* startGlue)
{
// Emit kdebug tracepoint to indicate dyld bootstrap has started <rdar://46878536>
dyld3::kdebug_trace_dyld_marker(DBG_DYLD_TIMING_BOOTSTRAP_START, 0, 0, 0, 0);
// if kernel had to slide dyld, we need to fix up load sensitive locations
// we have to do this before using any global variables
/**
1. rebase
*/
rebaseDyld(dyldsMachHeader);
// kernel sets up env pointer to be just past end of agv array
const char** envp = &argv[argc+1];
// kernel sets up apple pointer to be just past end of envp array
const char** apple = envp;
while(*apple != NULL) { ++apple; }
++apple;
// set up random value for stack canary
__guard_setup(apple);
#if DYLD_INITIALIZER_SUPPORT
// run all C++ initializers inside dyld
runDyldInitializers(argc, argv, envp, apple);
#endif
_subsystem_init(apple);
// now that we are done bootstrapping dyld, call dyld's main
uintptr_t appsSlide = appsMachHeader->getSlide();
return dyld::_main((macho_header*)appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
}
- rebaseDyld
- runDyldIntializers
- runDyldInitializers
- call dyld:_main
发现没有,一个库要被进程使用,需要做的就是那么几件事,
load映射进内存,
rebase/bind进行必要的资源指针修复,
一些环境变量的设置,
Initializer必要的初始化,
然后这个库就可以被使用了,dyld也不例外,然后dyld可以开心去加载其他动态库了
dyld::_main
代码非常长,贴几个重要的片段,有兴趣可以下载源码看下
配置环境变量
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
launchTraceID = dyld3::kdebug_trace_dyld_duration_start(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, (uint64_t)mainExecutableMH, 0, 0);
}
//Check and see if there are any kernel flags
dyld3::BootArgs::setFlags(hexToUInt64(_simple_getenv(apple, "dyld_flags"), nullptr));
#if __has_feature(ptrauth_calls)
// Check and see if kernel disabled JOP pointer signing (which lets us load plain arm64 binaries)
if ( const char* disableStr = _simple_getenv(apple, "ptrauth_disabled") ) {
if ( strcmp(disableStr, "1") == 0 )
sKeysDisabled = true;
}
else {
// needed until kernel passes ptrauth_disabled for arm64 main executables
if ( (mainExecutableMH->cpusubtype == CPU_SUBTYPE_ARM64_V8) || (mainExecutableMH->cpusubtype == CPU_SUBTYPE_ARM64_ALL) )
sKeysDisabled = true;
}
#endif
// Grab the cdHash of the main executable from the environment
uint8_t mainExecutableCDHashBuffer[20];
const uint8_t* mainExecutableCDHash = nullptr;
if ( const char* mainExeCdHashStr = _simple_getenv(apple, "executable_cdhash") ) {
unsigned bufferLenUsed;
if ( hexStringToBytes(mainExeCdHashStr, mainExecutableCDHashBuffer, sizeof(mainExecutableCDHashBuffer), bufferLenUsed) )
mainExecutableCDHash = mainExecutableCDHashBuffer;
}
getHostInfo(mainExecutableMH, mainExecutableSlide);
#if !TARGET_OS_SIMULATOR
// Trace dyld's load
notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file"));
// Trace the main executable's load
notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));
#endif
uintptr_t result = 0;
sMainExecutableMachHeader = mainExecutableMH;
sMainExecutableSlide = mainExecutableSlide;
// Set the platform ID in the all image infos so debuggers can tell the process type
// FIXME: This can all be removed once we make the kernel handle it in rdar://43369446
// The host may not have the platform field in its struct, but there's space for it in the padding, so always set it
{
__block bool platformFound = false;
((dyld3::MachOFile*)mainExecutableMH)->forEachSupportedPlatform(^(dyld3::Platform platform, uint32_t minOS, uint32_t sdk) {
if (platformFound) {
halt("MH_EXECUTE binaries may only specify one platform");
}
gProcessInfo->platform = (uint32_t)platform;
platformFound = true;
});
if (gProcessInfo->platform == (uint32_t)dyld3::Platform::unknown) {
// There were no platforms found in the binary. This may occur on macOS for alternate toolchains and old binaries.
// It should never occur on any of our embedded platforms.
#if TARGET_OS_OSX
gProcessInfo->platform = (uint32_t)dyld3::Platform::macOS;
#else
halt("MH_EXECUTE binaries must specify a minimum supported OS version");
#endif
}
}
#if TARGET_OS_OSX
// Check to see if we need to override the platform
const char* forcedPlatform = _simple_getenv(envp, "DYLD_FORCE_PLATFORM");
if (forcedPlatform) {
dyld_platform_t forcedPlatformType = 0;
if (strncmp(forcedPlatform, "6", 1) == 0) {
forcedPlatformType = PLATFORM_MACCATALYST;
} else if (strncmp(forcedPlatform, "2", 1) == 0) {
forcedPlatformType = PLATFORM_IOS;
} else {
halt("DYLD_FORCE_PLATFORM is only supported for platform 2 or 6.");
}
const dyld3::MachOFile* mf = (dyld3::MachOFile*)sMainExecutableMachHeader;
if (mf->allowsAlternatePlatform()) {
gProcessInfo->platform = forcedPlatformType;
}
}
// if this is host dyld, check to see if iOS simulator is being run
const char* rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH");
if ( (rootPath != NULL) ) {
// look to see if simulator has its own dyld
char simDyldPath[PATH_MAX];
strlcpy(simDyldPath, rootPath, PATH_MAX);
strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX);
int fd = dyld3::open(simDyldPath, O_RDONLY, 0);
if ( fd != -1 ) {
//TODO:模拟器流程分支return
const char* errMessage = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue, &result);
if ( errMessage != NULL )
halt(errMessage);
return result;
}
}
else {
((dyld3::MachOFile*)mainExecutableMH)->forEachSupportedPlatform(^(dyld3::Platform platform, uint32_t minOS, uint32_t sdk) {
if ( dyld3::MachOFile::isSimulatorPlatform(platform) )
halt("attempt to run simulator program outside simulator (DYLD_ROOT_PATH not set)");
});
}
#endif
CRSetCrashLogMessage("dyld: launch started");
//TODO:设置上下文
setContext(mainExecutableMH, argc, argv, envp, apple);
// Pickup the pointer to the exec path.
//TODO: 获取可执行路径
sExecPath = _simple_getenv(apple, "executable_path");
// <rdar://problem/13868260> Remove interim apple[0] transition code from dyld
if (!sExecPath) sExecPath = apple[0];
#if TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
// <rdar://54095622> kernel is not passing a real path for main executable
if ( strncmp(sExecPath, "/var/containers/Bundle/Application/", 35) == 0 ) {
if ( char* newPath = (char*)malloc(strlen(sExecPath)+10) ) {
strcpy(newPath, "/private");
strcat(newPath, sExecPath);
sExecPath = newPath;
}
}
#endif
if ( sExecPath[0] != '/' ) {
// have relative path, use cwd to make absolute
char cwdbuff[MAXPATHLEN];
if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
// maybe use static buffer to avoid calling malloc so early...
char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
strcpy(s, cwdbuff);
strcat(s, "/");
strcat(s, sExecPath);
sExecPath = s;
}
}
// Remember short name of process for later logging
sExecShortName = ::strrchr(sExecPath, '/');
if ( sExecShortName != NULL )
++sExecShortName;
else
sExecShortName = sExecPath;
#if TARGET_OS_OSX && __has_feature(ptrauth_calls)
// on Apple Silicon macOS, only Apple signed ("platform binary") arm64e can be loaded
sOnlyPlatformArm64e = true;
// internal builds, or if boot-arg is set, then non-platform-binary arm64e slices can be run
if ( const char* abiMode = _simple_getenv(apple, "arm64e_abi") ) {
if ( strcmp(abiMode, "all") == 0 )
sOnlyPlatformArm64e = false;
}
#endif
//设置进程限制条件
configureProcessRestrictions(mainExecutableMH, envp);
很多check/比较/set/get,对一些环境变量读取,校验,设置。
加载共享缓存
从iOS3.1开始,为了提高性能,绝大部分的系统动态库文件都打包存放到了一个缓存文件中。共享缓存中存的都是系统级别的动态库。自己常见的动态库或者第三方动态库不会放到共享缓存中。
// load shared cache
checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
#if TARGET_OS_SIMULATOR
if ( sSharedCacheOverrideDir)
mapSharedCache(mainExecutableSlide);
#else
mapSharedCache(mainExecutableSlide);
#endif
// If this process wants a different __DATA_CONST state from the shared region, then override that now
if ( (sSharedCacheLoadInfo.loadAddress != nullptr) && (gEnableSharedCacheDataConst != sharedCacheDataConstIsEnabled) ) {
uint32_t permissions = gEnableSharedCacheDataConst ? VM_PROT_READ : (VM_PROT_READ | VM_PROT_WRITE);
sSharedCacheLoadInfo.loadAddress->changeDataConstPermissions(mach_task_self(), permissions,
(gLinkContext.verboseMapping ? &dyld::log : nullptr));
}
}
- 核心函数mapSharedCache(mainExecutableSlide)
- mapSharedCache中调用loadDyldCache加载共享缓存
bool loadDyldCache(const SharedCacheOptions& options, SharedCacheLoadInfo* results)
{
results->loadAddress = 0;
results->slide = 0;
results->errorMessage = nullptr;
#if TARGET_OS_SIMULATOR
// simulator only supports mmap()ing cache privately into process
return mapCachePrivate(options, results);
#else
if ( options.forcePrivate ) {
// mmap cache into this process only
return mapCachePrivate(options, results);
}
else {
// fast path: when cache is already mapped into shared region
bool hasError = false;
if ( reuseExistingCache(options, results) ) {
hasError = (results->errorMessage != nullptr);
} else {
// slow path: this is first process to load cache
hasError = mapCacheSystemWide(options, results);
}
return hasError;
}
#endif
}
- 强制私有
- 共享缓存已有
- 第一次加载 这里会进入到// should be in mach/shared_region.h
dyld3 或 dyld2
//判断是否使用闭包模式也是dyld3的模式启动 ClosureMode::on 用dyld3 否则使用dyld2
if ( sClosureMode == ClosureMode::Off ) {
//dyld2
if ( gLinkContext.verboseWarnings )
dyld::log("dyld: not using closures\n");
} else {
//dyld3 DYLD_LAUNCH_MODE_USING_CLOSURE 用闭包模式
sLaunchModeUsed = DYLD_LAUNCH_MODE_USING_CLOSURE;
const dyld3::closure::LaunchClosure* mainClosure = nullptr;
dyld3::closure::LoadedFileInfo mainFileInfo;
mainFileInfo.fileContent = mainExecutableMH;
mainFileInfo.path = sExecPath;
...
// 首先到共享缓存中去找是否有dyld3的mainClosure
if ( sSharedCacheLoadInfo.loadAddress != nullptr ) {
mainClosure = sSharedCacheLoadInfo.loadAddress->findClosure(sExecPath);
...
}
...
//如果共享缓存中有,然后去验证closure是否是有效的
if ( (mainClosure != nullptr) && !closureValid(mainClosure, mainFileInfo,
、mainExecutableCDHash, true, envp) ) {
mainClosure = nullptr;
sLaunchModeUsed &= ~DYLD_LAUNCH_MODE_CLOSURE_FROM_OS;
}
bool allowClosureRebuilds = false;
if ( sClosureMode == ClosureMode::On ) {
allowClosureRebuilds = true;
}
...
//如果没有在共享缓存中找到有效的closure 此时就会自动创建一个closure
if ( (mainClosure == nullptr) && allowClosureRebuilds ) {
...
if ( mainClosure == nullptr ) {
// 创建一个mainClosure
mainClosure = buildLaunchClosure(mainExecutableCDHash, mainFileInfo, envp,
bootToken);
if ( mainClosure != nullptr )
sLaunchModeUsed |= DYLD_LAUNCH_MODE_BUILT_CLOSURE_AT_LAUNCH;
}
}
// try using launch closure
// dyld3 开始启动
if ( mainClosure != nullptr ) {
CRSetCrashLogMessage("dyld3: launch started");
...
//启动 launchWithClosure
bool launched = launchWithClosure(mainClosure,
sSharedCacheLoadInfo.loadAddress,(dyld3::MachOLoaded*)mainExecutableMH,...);
//启动失败
if ( !launched && closureOutOfDate && allowClosureRebuilds ) {
// closure is out of date, build new one
// 如果启动失败 重新去创建mainClosure
mainClosure = buildLaunchClosure(mainExecutableCDHash, mainFileInfo,
envp, bootToken);
if ( mainClosure != nullptr ) {
...
//dyld3再次启动
launched = launchWithClosure(mainClosure, sSharedCacheLoadInfo.loadAddress,
(dyld3::MachOLoaded*)mainExecutableMH,...);
}
}
if ( launched ) {
gLinkContext.startedInitializingMainExecutable = true;
if (sSkipMain)
//启动成功直接返回main函数的地址
result = (uintptr_t)&fake_main;
return result;
}
else {
//启动失败
}
}
}
- dyld3优化
- 加载速度
1.1. 一个deamon进程的解析器,预处理所有可能影响启动速度的search path,@path和环境变量
1.2. 然后分析Mach-O的header和依赖,并完成所有符号查找的工作
1.3. 然后将这些结构创建成一个启动闭包,系统app的启动闭包被构建在sharedCache中,第三方的app,在程序安装或者更新的时候构建这个启动闭包,这些都在程序启动前已经被完成
1.4 闭包被构建在shared cache中,我们甚至不需要打开一个单独的文件,加载速度很快 - 安全性
加载闭包,并验证启动闭包的安全性,在dyld3之前在程序启动时,dyld递归分析mach-oheader的依赖,可能修改并注入依赖库的问题 -
看个官方的对比图
实例化主程序
dyld3 和 dyld2走的流程差不多,dyld3 用的是闭包模式,更快,更安全。imge是镜像文件的意思,镜像文件就是从磁盘映射到内存的mach-O文件。可以理解为只要是加载到内存的mach-o文件就叫镜像文件。
//TODO: 实例化主程序,返回imageLoader对象,并交给dyld管理
sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
//主程序赋值给glinkContext
gLinkContext.mainExecutable = sMainExecutable;
//主程序是否代码签名
gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);
For each executable file (dynamic shared object) in use, an ImageLoader is instantiated.
- 主程序在dyld之前已经被系统内核映射到进程缓存。从上面这段官方注释可知,任何一个可执行文件要被使用,需要实例化一个imageLoader。
- 实例化主程序的作用是为主可执行文件实例化为一个ImageLoaderMachO对象,可以看做把主可执行文件抽象为ImageLoaderMachO的实例,交给dyld管理,并被程序使用。
- 添加到了dyld管理的MappedRanges主列表-addImage()
实例化动态库-加载插入的动态库
// load any inserted libraries
// TODO:加载插入的库
if ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib)
loadInsertedDylib(*lib);
}
// record count of inserted libraries so that a flat search will look at
// inserted libraries, then main, then others.
sInsertedDylibCount = sAllImages.size()-1;
//核心函数-load
ImageLoader* load(const char* path, const LoadContext& context, unsigned& cacheIndex)
//实例化一个ImageLoader
// map in file and instantiate an ImageLoader
static ImageLoader* loadPhase6(int fd, const struct stat& stat_buf, const char* path, const LoadContext& context)
// create image by mapping in a mach-o file
ImageLoader* ImageLoaderMachO::instantiateFromFile
//添加到dyld管理的主列表
static ImageLoader* checkandAddImage(ImageLoader* image, const LoadContext& context)
- 做的事情跟实例化主程序差不多,就是把插入的动态库都是实例化一个imageLoader,并添加到dyld管理的主列表
- load方法实现了一个算法,避免重复的库文件加载
链接主程序
// TODO:链接主程序
gLinkContext.linkingMainExecutable = true;
#if SUPPORT_ACCELERATE_TABLES
if ( mainExcutableAlreadyRebased ) {
// previous link() on main executable has already adjusted its internal pointers for ASLR
// work around that by rebasing by inverse amount
sMainExecutable->rebase(gLinkContext, -mainExecutableSlide);
}
#endif
link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
sMainExecutable->setNeverUnloadRecursive();
if ( sMainExecutable->forceFlat() ) {
gLinkContext.bindFlat = true;
gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
}
链接动态库
// link any inserted libraries
// do this after linking main executable so that any dylibs pulled in by inserted
// dylibs (e.g. libSystem) will not be in front of dylibs the program uses
// TODO:链接动态库 循环
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
image->setNeverUnloadRecursive();
}
if ( gLinkContext.allowInterposing ) {
// only INSERTED libraries can interpose
// register interposing info after all inserted libraries are bound so chaining works
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->registerInterposing(gLinkContext);
}
}
}
链接主程序和链接动态库逻辑基本一样,核心函数是link()
void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool preflightOnly, bool neverUnload, const RPathChain& loaderRPaths, const char* imagePath)
{
//dyld::log("ImageLoader::link(%s) refCount=%d, neverUnload=%d\n", imagePath, fDlopenReferenceCount, fNeverUnload);
// clear error strings
(*context.setErrorStrings)(0, NULL, NULL, NULL);
uint64_t t0 = mach_absolute_time();
//递归loadLibraries
this->recursiveLoadLibraries(context, preflightOnly, loaderRPaths, imagePath);
context.notifyBatch(dyld_image_state_dependents_mapped, preflightOnly);
// we only do the loading step for preflights
if ( preflightOnly )
return;
uint64_t t1 = mach_absolute_time();
context.clearAllDepths();
this->updateDepth(context.imageCount());
__block uint64_t t2, t3, t4, t5;
{
dyld3::ScopedTimer(DBG_DYLD_TIMING_APPLY_FIXUPS, 0, 0, 0);
t2 = mach_absolute_time();
//递归rebase
this->recursiveRebaseWithAccounting(context);
context.notifyBatch(dyld_image_state_rebased, false);
t3 = mach_absolute_time();
//初始化主程序时,赋值为true
if ( !context.linkingMainExecutable )
this->recursiveBindWithAccounting(context, forceLazysBound, neverUnload);
t4 = mach_absolute_time();
if ( !context.linkingMainExecutable )
this->weakBind(context);
t5 = mach_absolute_time();
}
- link()函数主要做的事情
- recursiveLoadLibraries(),保存一个依赖库的数组,方便在内存中找到自己的依赖库,后面符号绑定时候也会用到这个数组。
- recursiveRebaseWithAccounting(context)
主程序和动态库的绑定
// Bind and notify for the main executable now that interposing has been registered
uint64_t bindMainExecutableStartTime = mach_absolute_time();
sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
uint64_t bindMainExecutableEndTime = mach_absolute_time();
ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
gLinkContext.notifyBatch(dyld_image_state_bound, false);
// Bind and notify for the inserted images now interposing has been registered
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true, nullptr);
}
}
// <rdar://problem/12186933> do weak binding only after all inserted images linked
// TODO:主程序弱绑定(after all inserted images linked)
sMainExecutable->weakBind(gLinkContext);
gLinkContext.linkingMainExecutable = false;
sMainExecutable->recursiveMakeDataReadOnly(gLinkContext);
- recursiveBind()
- 对主可执行文件和动态库进行符号绑定操作,用到保存的libImages数组
- 数据fixup完成后把一些数据段设为只读
运行初始化方法
所有镜像文件都已加载,并且资源指针也都修复完毕,可以做一些必要的初始化了。
// TODO:主程序初始化
initializeMainExecutable();
void initializeMainExecutable()
{
// record that we've reached this step
gLinkContext.startedInitializingMainExecutable = true;
// run initialzers for any inserted dylibs
// 运行所有的dylibs中的initialzers方法
ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
initializerTimes[0].count = 0;
const size_t rootCount = sImageRoots.size();
//先运行动态库的初始化方法
if ( rootCount > 1 ) {
for(size_t i=1; i < rootCount; ++i) {
sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
}
}
// run initializers for main executable and everything it brings up
// 运行主程序的初始化方法
sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
...
}
- 这里是我们关注的重点
- _objc_init在这里别调用,向dyld注册回调函数,通过回调函数,各个执行文件的oc class,协议,方法,符号等内容将交给libObjc处理,包括我们主可执行文件(也就是我们自己code出来的oc代码)。篇幅有限,下一篇我们再着重讲解。
返回main函数
if (sSkipMain) {
notifyMonitoringDyldMain();
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
}
ARIADNEDBG_CODE(220, 1);
result = (uintptr_t)&fake_main;
*startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
}
return result;
总结:
分析了main函数之前,iOS程序的加载过程
- 首先内核fork进程,分配进程内存,把主可执行文件map到内存,并启动dyld,这一步从内核态过渡到用户态
- dyld 首先会rebaseSelf,并做必要的环境设置,然后分析mainExecutableMH查找可用的共享缓存,并加载。这里我们提到了
dyld2 和 dyld3,以及dyld3相对于dyld2在启动速度和安全上做的优化。 - dyld的主要作用是,分析主程序mach-o文件,动态加载三方库,映进内存,并对他们进行管理。由于ASLR及代码签名的原因,需要对image进行rebase和binding操作,目的是让程序内的资源指针指向正确的内存地址。在所有资源修复完毕之后,执行主可执行文件的初始化。也就是loading,rebase/binding,initializer三件套。
- 在initializer中,dyld会保证最下层的动态库libsystem被最先初始化,libDispatch/libObjc也会很早被调用初始化。libObjc的初始化,会向dyld注册回调函数,用于管理所有可执行文件的OC部分。放在下一篇来分析
思考:
我们已经知道了main函数之前,程序的启动的大致流程,我们可以从那几个方面来提升程序的启动速度?
以下内容,来自wwdc
- less dylib (减少库加载,必要时可以合并库)
- less classed and methods (在加载时,需要被管理,修复指针)
- less initializer (初始化主程序时,会调用所有的动态库的initializer和c++构造函数)
- more swift (no initializer,不允许特定类型的未对齐数据)
- less load
总之,你写越少的代码,程序启动越快😁😁😁。这篇内容写得还漫长,能力有限,中间可能有不正确或者不准确的地方,希望大家能在评论区多多留言交流。