Awesome系列
- Awesome Machine Learning
- Awesome Deep Learning
- Awesome TensorFlow
- Awesome TensorFlow Implementations
- Awesome Torch
- Awesome Computer Vision
- Awesome Deep Vision
- Awesome RNN
- Awesome NLP
- Awesome AI
- Awesome Deep Learning Papers
- Awesome 2vec
Deep Learning
- [Book] Neural Networks and Deep Learning 中文翻译(不完整): 神经网络与深度学习 第五章中文翻译: [译] 第五章 深度神经网络为何很难训练
- [Book] Deep Learning - MIT Press
- [Book] Pattern Recognition and Machine Learning (Bishop) | 豆瓣 | PRML & DL笔记 | GitBook
- [Course] Deep Learning - Udacity
- [Course] Machine Learning by Andrew Ng - Coursera | 课程资料整理 @ zhwhong
- [Course] Convolutional Neural Networks for Visual Recognition(CS231n) | 课程资料整理 @ zhwhong
- [Course] Deep Learning for Natural Language Processing(CS224d) | 课程资料整理 @ zhwhong
- [View] Top Deep Learning Projects on Github
- [View] Deep Learning for NLP resources
- [View] 资源 | 深度学习资料大全:从基础到各种网络模型
- [View] Paper | DL相关论文中文翻译
- [View] 深度学习新星:GAN的基本原理、应用和走向
- [View] 推荐 | 九本不容错过的深度学习和神经网络书籍
- [View] Github好东西传送门 --> 深度学习入门与综述资料
Frameworks
- TensorFlow (by google)
- MXNet
- Torch (by Facebook)
- [Caffe (by UC Berkley)(http://caffe.berkeleyvision.org/)
- [Deeplearning4j(http://deeplearning4j.org)
- Brainstorm
- Theano、Chainer、Marvin、Neon、ConvNetJS
TensorFlow
- 官方文档
- TensorFlow Tutorial
- TensorFlow 官方文档中文版
- TensorFlow Whitepaper
- [译] TensorFlow白皮书
- [API] API Document
入门教程
- [教程] Learning TensorFlow
- TensorFlow-Tutorials @ github (推荐)
- Awesome-TensorFlow (推荐)
- TensorFlow-Examples @ github
- tensorflow_tutorials @ github
分布式教程
- Distributed TensorFlow官方文档
- distributed-tensorflow-example @ github (推荐)
- DistributedTensorFlowSample @ github
- Parameter Server
Paper (Model)
CNN Nets
- LeNet
- AlexNet
- OverFeat
- NIN
- GoogLeNet
- Inception-V1
- Inception-V2
- Inception-V3
- Inception-V4
- Inception-ResNet-v2
- ResNet 50
- ResNet 101
- ResNet 152
- VGG 16
- VGG 19
(注:图片来自 Github : TensorFlow-Slim image classification library)
额外参考:
- [卷积神经网络-进化史] 从LeNet到AlexNet
- [透析] 卷积神经网络CNN究竟是怎样一步一步工作的?
- GoogLenet中,1X1卷积核到底有什么作用呢?
- 深度学习 — 反向传播(BP)理论推导
- 无痛的机器学习第一季目录 - 知乎
Object Detection
额外参考:
RNN & LSTM
- [福利] 深入理解 RNNs & LSTM 网络学习资料 @ zhwhong
- [RNN] Simple LSTM代码实现 & BPTT理论推导 @ zhwhong
- 计算机视觉中 RNN 应用于目标检测 @ zhwhong
- [推荐] Understanding LSTM Networks @ colah | 理解LSTM网络[简书] @ Not_GOD
- The Unreasonable Effectiveness of Recurrent Neural Networks @ Andrej Karpathy
- LSTM Networks for Sentiment Analysis (theano官网LSTM教程+代码)
- Recurrent Neural Networks Tutorial @ WILDML
- Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) @ iamtrask
Stanford 机器学习课程整理
- [coursera 机器学习课程] Machine Learning by Andrew Ng @ zhwhong
- [斯坦福CS231n课程整理] Convolutional Neural Networks for Visual Recognition(附翻译,下载) @ zhwhong
- [斯坦福CS224d课程整理] Natural Language Processing with Deep Learning @ zhwhong
- [斯坦福CS229课程整理] Machine Learning Autumn 2016 @ zhwhong
(注:感谢您的阅读,希望本文对您有所帮助。如果觉得不错欢迎分享转载,但请先点击 这里 获取授权。本文由 版权印 提供保护,禁止任何形式的未授权违规转载,谢谢!)