天池血糖预测

一,数据至上原则

当拿到赛题,除了阅读赛制外,便是对数据字段的理解。

初步了解:这个题目的字段主要是关于化验指标,大体概括为:血液,肝脏,大腰子(肾)功能的各项指标。我们的目标是预测血糖值(第一赛季)。

数据查看:查看数据,需要看那些方面的内容,主要包括:有多少字段,每个字段的类型(数值,字符等),以及字段中缺失值占比等。

0.引入需要的依赖包

# coding:utf-8# 引入需要的包importnumpyasnpimportpandasaspd%matplotlib inlineimportmatplotlib.pyplotaspltimportseabornassnscolor = sns.color_palette()sns.set_style('darkgrid')importwarningsdefignore_warn(*args ,**kwargs):passwarnings.warn = ignore_warnfromscipyimportstatsfromscipy.statsimportnorm, skewpd.set_option('display.float_format',lambdax:'{:.3f}'.format(x))#Limiting floats output to 3 decimal points

1.查看数据

train = pd.read_csv('../data/d_train_20180102.csv',encoding='gbk')

test = pd.read_csv('../data/d_test_A_20180102.csv',encoding='gbk')

print('train shape',train.shape)

print('test shape',test.shape)

利用pandas读取数据,由于有中文,因此采用gkb编码,如果对于pandas不熟悉可以阅读十分钟入门pandas

train shape (5642, 42)

test shape (1000, 41)

训练集还有5462条数据,42列,需要我们预测的数据有1000天,41列。很清楚了,训练集中因为含有血糖,因此比测试多了一列。

# 查看特征列

print(train.columns)

我们查看一下,都有哪些列

Index(['id', '性别', '年龄', '体检日期', '*天门冬氨酸氨基转换酶', '*丙氨酸氨基转换酶', '*碱性磷酸酶',

      '*r-谷氨酰基转换酶', '*总蛋白', '白蛋白', '*球蛋白', '白球比例', '甘油三酯', '总胆固醇',

      '高密度脂蛋白胆固醇', '低密度脂蛋白胆固醇', '尿素', '肌酐', '尿酸', '乙肝表面抗原', '乙肝表面抗体', '乙肝e抗原',

      '乙肝e抗体', '乙肝核心抗体', '白细胞计数', '红细胞计数', '血红蛋白', '红细胞压积', '红细胞平均体积',

      '红细胞平均血红蛋白量', '红细胞平均血红蛋白浓度', '红细胞体积分布宽度', '血小板计数', '血小板平均体积',

      '血小板体积分布宽度', '血小板比积', '中性粒细胞%', '淋巴细胞%', '单核细胞%', '嗜酸细胞%', '嗜碱细胞%',

      '血糖'],

      dtype='object')

嗯嗯,大概有这些列,基本不懂是干啥用的,但是即使对于列不懂,也要时刻记住,血糖 是我们需要的目标。

简单看一看数据中字段的形式

# 查看数据

print(train.head())

print(test.head())

  id 性别  年龄        体检日期  *天门冬氨酸氨基转换酶  *丙氨酸氨基转换酶  *碱性磷酸酶  *r-谷氨酰基转换酶  *总蛋白  \

0  1  男  41  12/10/2017      24.960    23.100  99.590      20.230 76.880 

1  2  男  41  19/10/2017      24.570    36.250  67.210      79.000 79.430 

2  3  男  46  26/10/2017      20.820    15.230  63.690      38.170 86.230 

3  4  女  22  25/10/2017      14.990    10.590  74.080      20.220 70.980 

4  5  女  48  26/10/2017      20.070    14.780  75.790      22.720 78.050 

    白蛋白  ...    血小板计数  血小板平均体积  血小板体积分布宽度  血小板比积  中性粒细胞%  淋巴细胞%  单核细胞%  \

0 49.600  ...  166.000    9.900    17.400  0.164  54.100 34.200  6.500 

1 47.760  ...  277.000    9.200    10.300  0.260  52.000 36.700  5.800 

2 48.000  ...  241.000    8.300    16.600  0.199  48.100 40.300  7.700 

3 44.020  ...  252.000  10.300    10.800  0.260  41.700 46.500  6.700 

4 41.830  ...  316.000  11.100    14.000  0.350  56.600 33.100  9.100 

  嗜酸细胞%  嗜碱细胞%    血糖 

0  4.700  0.600 6.060 

1  4.700  0.800 5.390 

2  3.200  0.800 5.590 

3  4.600  0.500 4.300 

4  0.600  0.600 5.420 

[5 rows x 42 columns]

嗯嗯,大概是这个样子,基本上就是每个id是一条记录,包含了基本属性和化验指标。

# 查看缺失值比例data = pd.concat([train,test],axis=0)print(data.isnull().sum()/len(data))

*r-谷氨酰基转换酶    0.212

*丙氨酸氨基转换酶    0.212

*天门冬氨酸氨基转换酶  0.212

*总蛋白          0.212

*球蛋白          0.212

*碱性磷酸酶        0.212

id            0.000

中性粒细胞%        0.003

乙肝e抗体        0.769

乙肝e抗原        0.769

乙肝核心抗体        0.769

乙肝表面抗体        0.769

乙肝表面抗原        0.769

低密度脂蛋白胆固醇    0.210

体检日期          0.000

单核细胞%        0.003

嗜碱细胞%        0.003

嗜酸细胞%        0.003

尿素            0.237

尿酸            0.237

年龄            0.000

性别            0.000

总胆固醇          0.210

淋巴细胞%        0.003

甘油三酯          0.210

白球比例          0.212

白细胞计数        0.003

白蛋白          0.212

红细胞体积分布宽度    0.003

红细胞压积        0.003

红细胞平均体积      0.003

红细胞平均血红蛋白浓度  0.003

红细胞平均血红蛋白量    0.003

红细胞计数        0.003

肌酐            0.237

血小板体积分布宽度    0.004

血小板平均体积      0.004

血小板比积        0.004

血小板计数        0.003

血糖            0.151

血红蛋白          0.003

高密度脂蛋白胆固醇    0.210

dtype: float64

可以看到,乙肝的缺失值如此庞大,那么我们拿出一个乙肝值,先看看乙肝对血糖赢下的大小吧

frompylabimportmplmpl.rcParams['font.sans-serif'] = ['FangSong']# 指定默认字体mpl.rcParams['axes.unicode_minus'] =False# 解决保存图像是负号'-'显示为方块的问题train['乙肝e抗体'] = train['乙肝e抗体'].dropna()fig ,ax = plt.subplots()ax.scatter(x = train['乙肝e抗体'],y=train['血糖'])plt.ylabel('血糖')plt.xlabel('乙肝e抗体')

貌似也看不出来啥,这里大家可以通过绘制图像,然后观察与每个特征与血

糖之间的关系,可以变换一下特征的类型,比如对于最后一张,我就是经过了平滑映射的。给搭建看一下原始的图

发现了没有,通过一些对特征的变换,可以表示为一个更具有线性关系的关系,具体平滑变化的方式很多,大家可以自行百度。我也是新人,会的不多不多。

既然都看了特征和目标血糖的关系了,不如看一看血糖的分布吧

# 血糖 is the variable we need to predict. So let's do some analysis on this variable first.sns.distplot(train['血糖'],fit=norm)(mu,sigma) = norm.fit(train['血糖'])print('\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma))#Now plot the distributionplt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)],            loc='best')plt.ylabel('Frequency')plt.title('血糖分布')fig = plt.figure()res = stats.probplot(train['血糖'], plot=plt)plt.show()

这个是以先验的高斯分布去绘制

存在了一些偏都很大的样本,其实最完美的形式是这样

为什么这样呢,因为很多机器学习方法都是在某某分的条件下去推理的,对于数据可是画的内容,大概说到这里吧,更多的内容,可以去kaggle学习,我也是边学边买。

对于数值特征,可以看看与目标的相关性

corrmat = train.corr()plt.subplots(figsize=(12,9))sns.heatmap(corrmat,vmax=0.9,square=True)

当然,我们可以把我们预测的结果和目标通过绘图看一下差距,因为评测函数所反映下只是最优化评测函数的一个值

这个只是一个例子,因为我把ID也给训练了,所以可以在训练集你和的很好,其实,在测试集很差。

这里主要想说的就是,大家可以通过感性的认识,看一下数据所反映的事情,通过绘图更加容易看到数据的分布情况。

二,说一下基本的比赛数据流程框架

1.读取数据

这个部分主要是对数据读取和初步探索,如第一部分说的内容

2.评测函数

这个部分题目不同,所以没有举例,其本质就是写出题目需要的评测方式,根据评测方式设计使评测函数极小的方法

3.线下模拟

因为天池的机制,我们每次只能验证一次结果,这是,需要构造一个和线上类似的集合,作为模拟线上成绩,通过本地算法,不停优化

    好的线下的原则:同增同减就好。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容