哈希表 05 实现自己的哈希表

实现思路

  • 维护一个M个元素的数组,数组的每一格挂一棵红黑树;
  • 一个元素进来,先根据key计算出其要挂载到哪棵红黑树中;
  • 确定了要挂载的红黑树后,问题就变成了在红黑树中添加,删除等操作了;
  • M越小,哈希冲突的概率就越大,所以M的大小很大程度的影响了哈希表的效率;
import java.util.TreeMap;

public class HashTable<K, V> {

    private TreeMap<K, V>[] hashtable;
    private int size;
    private int M;

    public HashTable(int M){
        this.M = M;
        size = 0;
        hashtable = new TreeMap[M];
        for(int i = 0 ; i < M ; i ++)
            hashtable[i] = new TreeMap<>();
    }

    public HashTable(){
        this(97);
    }

    private int hash(K key){
        return (key.hashCode() & 0x7fffffff) % M;
    }

    public int getSize(){
        return size;
    }

    public void add(K key, V value){
        TreeMap<K, V> map = hashtable[hash(key)];
        if(map.containsKey(key))
            map.put(key, value);
        else{
            map.put(key, value);
            size ++;
        }
    }

    public V remove(K key){
        V ret = null;
        TreeMap<K, V> map = hashtable[hash(key)];
        if(map.containsKey(key)){
            ret = map.remove(key);
            size --;
        }
        return ret;
    }

    public void set(K key, V value){
        TreeMap<K, V> map = hashtable[hash(key)];
        if(!map.containsKey(key))
            throw new IllegalArgumentException(key + " doesn't exist!");

        map.put(key, value);
    }

    public boolean contains(K key){
        return hashtable[hash(key)].containsKey(key);
    }

    public V get(K key){
        return hashtable[hash(key)].get(key);
    }
}

哈希表性能测试

import java.util.ArrayList;

public class Main {

    public static void main(String[] args) {
        System.out.println("Pride and Prejudice");
        ArrayList<String> words = new ArrayList<>();
        if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
            System.out.println("Total words: " + words.size());

            // Test BST
            long startTime = System.nanoTime();

            BST<String, Integer> bst = new BST<>();
            for (String word : words) {
                if (bst.contains(word))
                    bst.set(word, bst.get(word) + 1);
                else
                    bst.add(word, 1);
            }

            for(String word: words)
                bst.contains(word);

            long endTime = System.nanoTime();
            double time = (endTime - startTime) / 1000000000.0;
            System.out.println("BST: " + time + " s");


            // Test AVL
            startTime = System.nanoTime();

            AVLTree<String, Integer> avl = new AVLTree<>();
            for (String word : words) {
                if (avl.contains(word))
                    avl.set(word, avl.get(word) + 1);
                else
                    avl.add(word, 1);
            }

            for(String word: words)
                avl.contains(word);

            endTime = System.nanoTime();
            time = (endTime - startTime) / 1000000000.0;
            System.out.println("AVL: " + time + " s");


            // Test RBTree
            startTime = System.nanoTime();

            RBTree<String, Integer> rbt = new RBTree<>();
            for (String word : words) {
                if (rbt.contains(word))
                    rbt.set(word, rbt.get(word) + 1);
                else
                    rbt.add(word, 1);
            }

            for(String word: words)
                rbt.contains(word);

            endTime = System.nanoTime();
            time = (endTime - startTime) / 1000000000.0;
            System.out.println("RBTree: " + time + " s");


            // Test HashTable
            startTime = System.nanoTime();

            // HashTable<String, Integer> ht = new HashTable<>();
            HashTable<String, Integer> ht = new HashTable<>(131071);
            for (String word : words) {
                if (ht.contains(word))
                    ht.set(word, ht.get(word) + 1);
                else
                    ht.add(word, 1);
            }

            for(String word: words)
                ht.contains(word);

            endTime = System.nanoTime();
            time = (endTime - startTime) / 1000000000.0;
            System.out.println("HashTable: " + time + " s");
        }

        System.out.println();
    }
    
}

输出:

  • 哈希表要稍微有点优势;

Pride and Prejudice
Total words: 125901
BST: 0.1774385 s
AVL: 0.0993948 s
RBTree: 0.0992375 s
HashTable: 0.0919606 s

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容

  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,769评论 0 13
  • 这篇文章由一个简单的问题引出: 有两个字典,分别存有 100 条数据和 10000 条数据,如果用一个不存在的 k...
    多喝水JS阅读 598评论 0 11
  • Map 是一种很常见的数据结构,用于存储一些无序的键值对。在主流的编程语言中,默认就自带它的实现。C、C++ 中的...
    一缕殇流化隐半边冰霜阅读 9,264评论 23 67
  • 有两个字典,分别存有 100 条数据和 10000 条数据,如果用一个不存在的 key 去查找数据,在哪个字典中速...
    和风细羽阅读 2,351评论 0 5
  • 我在办公室和同事讨论工作,我的语气有点高高在上。慧子来了上海,在旁边看着我,后来我发现Y背着书包也来了。但我没顾上...
    七未笙阅读 119评论 0 0