机器学习入门(1)--监督式学习

申明:此文章内容来自于 Doctor AndrewNG的视频,经过编辑而成

例子1

假设你想预测房价。某地收集了数据集,其中一个数据集如下图,横坐标:不同房子的面积,单位平方英尺;纵坐标:房价,单位 千美元。根据给定数据,假设你有栋房子,750平尺,想知道这房子能以什么价格成交出售。

图1:房间当前成交数据

如果采取人工智能的方式,采用机器学习怎么帮你呢?继续学习算法可以: 绘出一条直线,让直线尽可能匹配到所有数据。 基于此,看上去,那个房子应该、可能、也许、大概 卖到15万美元。但这不是唯一的学习算法。 可能还有更好的。比如不用直线了, 可能平方函数会更好, 即二次多项式更符合数据集。如果你这样做, 预测结果就应该是20万刀。

图二:两种不同学习算法

定义

监督学习,意指给出一个算法, 需要部分数据集已经有正确答案,算法的结果就是算出更多的正确答案。监督学习又叫回归问题,意指要预测一个连续值的输出。而术语回归, 意味着要预测这类连续值属性的种类。 

例子2

根据医学记录, 并预测胸部肿瘤是恶性良性。 如果某人发现有胸部肿瘤,恶性肿瘤有害又危险, 良性肿瘤则是少害。 让我们看一个收集好的数据集, 假设在数据集中,横轴表示肿瘤的大小, 纵轴我打算圈上0或1,是或否, 即肿瘤是恶性的还是良性的。 所以如图所示,可以看到这个大小的肿瘤块 是良性的,还有这些大小的都是良性的。 不幸地是也看到一些恶性肿瘤,比如这些大小的肿瘤。 所以,有5个良性块,在这一块, 还有5个恶性的,它们纵轴值为1. 现在假设某人杯具地得胸部肿瘤了, 大小大概是这么大。 对应的机器学习问题就是,你能否估算出一个概率, 即肿瘤为恶或为良的概率? 专业地说,这是个分类问题。 分类是要预测一个离散值输出。 这里是0或1,恶性或良性。

事实证明, 在分类问题中,有时会有超过两个的值, 输出的值可能超过两种。举个具体例子, 胸部肿瘤可能有三种类型,所以要预测离散值0,1,2,3 0就是良性肿瘤,没有癌症。 1 表示1号癌症,假设总共有三种癌症。 2 是2号癌症,3 就是3号癌症。 这同样是个分类问题,因为它的输出的离散值集合 分别对应于无癌,1号,2号,3号癌症

肿瘤大小与肿瘤性质的历史数据

在上例中,只使用了一个特征属性,即肿瘤块大小, 来预测肿瘤是恶性良性。在其它机器学习问题里, 有着不只一个的特征和属性。 例子,现在不只是知道肿瘤大小, 病人年龄和肿瘤大小都知道了。这种情况下, 数据集如表图所示,有些病人,年龄、肿瘤已知, 不同的病人,会有一点不一样, 肿瘤恶性,则用叉来代表。所以,假设 有一朋友得了肿瘤。肿瘤大小和年龄 落在此处。那么依据这个给定的数据集,学习算法 所做的就是画一条直线,分开 恶性肿瘤和良性肿瘤,所以学习算法会 画条直线,像这样,把两类肿瘤分开。然后你就能判断你朋友的肿瘤是...了 如果它在那边,学习算法就说 你朋友的肿瘤在良性一边,因此更可能 是良性的。

肿瘤大小&患者年龄与肿瘤性质的历史数据

本例中,总共有两个特征, 即病人年龄和肿瘤大小。在别的ML问题中, 经常会用到更多特征,通常使用这些特征:比如块的厚度,即胸部肿瘤的厚度 肿瘤细胞大小和形状的一致性, 等等。它表明, 最有趣的学习算法能够处理,无穷多个特征。不是3到5个这么少。那么,你如何处理 无限多特征呢?甚至你如何存储无数的东西 进电脑里,又要避免内存不足? 事实上,一种叫支持向量机的算法能让电脑处理无限多的特征,后面再详细描述。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容

  • 首页 资讯 文章 资源 小组 相亲 登录 注册 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他...
    Helen_Cat阅读 3,860评论 1 10
  • 题目链接:http://codeforces.com/contest/787/problem/C简介: 如果状态图...
    TimeMage阅读 1,043评论 1 2
  • 文/白澜 1 你还好吗? 听说再过几个月你就要结婚了,听说那个女孩是你爸妈喜欢的类型,听说你们很般配。最近两三年里...
    维娜陈阅读 495评论 3 8
  • 2017年10月20日,如是家人李建英,第66天种种子日志 发心:我今不是为了我个人而闻思修行,而是为了六道轮回一...
    若嘉阅读 142评论 1 1
  • 文、乔小乐 你工作生活独立,完全可以自立过着自己想要的小日子,马桶坏了你可以修好,灯泡坏了也不容话下,自己坚强的面...
    猫姐原创阅读 417评论 0 1